Wiggert
Jerry D.
Wiggert
Jerry D.
No Thumbnail Available
6 results
Search Results
Now showing
1 - 6 of 6
-
ArticleAssessment of skill and portability in regional marine biogeochemical models : role of multiple planktonic groups(American Geophysical Union, 2007-08-02) Friedrichs, Marjorie A. M. ; Dusenberry, Jeffrey A. ; Anderson, Laurence A. ; Armstrong, Robert A. ; Chai, Fei ; Christian, James R. ; Doney, Scott C. ; Dunne, John P. ; Fujii, Masahiko ; Hood, Raleigh R. ; McGillicuddy, Dennis J. ; Moore, J. Keith ; Schartau, Markus ; Spitz, Yvette H. ; Wiggert, Jerry D.Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
-
ArticleSatellite-detected fluorescence reveals global physiology of ocean phytoplankton(Copernicus Publications on behalf of the European Geosciences Union, 2009-05-08) Behrenfeld, Michael J. ; Westberry, Toby K. ; Boss, Emmanuel S. ; O'Malley, Robert T. ; Siegel, David A. ; Wiggert, Jerry D. ; Franz, Bryan A. ; McClain, Charles R. ; Feldman, G. C. ; Doney, Scott C. ; Moore, J. Keith ; Dall'Olmo, Giorgio ; Milligan, A. J. ; Lima, Ivan D. ; Mahowald, Natalie M.Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.
-
Working PaperUnited States contributions to the Second International Indian Ocean Expedition (US IIOE-2)(US Steering Committee, 2018-10-23) Hood, Raleigh R. ; Beal, Lisa M. ; Benway, Heather M. ; Chandler, Cynthia L. ; Coles, Victoria J. ; Cutter, Gregory A. ; Dick, Henry J. B. ; Gangopadhyay, Avijit ; Goes, Joachim I. ; Humphris, Susan E. ; Landry, Michael R. ; Lloyd, Karen G. ; McPhaden, Michael J. ; Murtugudde, Raghu ; Subrahmanyam, Bulusu ; Susanto, R. Dwi ; Talley, Lynne D. ; Wiggert, Jerry D. ; Zhang, ChidongFrom the Preface: The purpose of this document is to motivate and coordinate U.S. participation in the Second International Indian Ocean Expedition (IIOE-2) by outlining a core set of research priorities that will accelerate our understanding of geologic, oceanic, and atmospheric processes and their interactions in the Indian Ocean. These research priorities have been developed by the U.S. IIOE-2 Steering Committee based on the outcomes of an interdisciplinary Indian Ocean science workshop held at the Scripps Institution of Oceanography on September 11-13, 2017. The workshop was attended by 70 scientists with expertise spanning climate, atmospheric sciences, and multiple sub-disciplines of oceanography. Workshop participants were largely drawn from U.S. academic institutions and government agencies, with a few experts invited from India, China, and France to provide a broader perspective on international programs and activities and opportunities for collaboration. These research priorities also build upon the previously developed International IIOE-2 Science Plan and Implementation Strategy. Outcomes from the workshop are condensed into five scientific themes: Upwelling, inter-ocean exchanges, monsoon dynamics, inter-basin contrasts, marine geology and the deep ocean. Each theme is identified with priority questions that the U.S. research community would like to address and the measurements that need to be made in the Indian Ocean to address them.
-
ArticleProgress in understanding of Indian Ocean circulation, variability, air-sea exchange, and impacts on biogeochemistry(European Geosciences Union, 2021-11-26) Phillips, Helen E. ; Tandon, Amit ; Furue, Ryo ; Hood, Raleigh R. ; Ummenhofer, Caroline C. ; Benthuysen, Jessica A. ; Menezes, Viviane V. ; Hu, Shijian ; Webber, Ben ; Sanchez-Franks, Alejandra ; Cherian, Deepak A. ; Shroyer, Emily L. ; Feng, Ming ; Wijesekera, Hemantha W. ; Chatterjee, Abhisek ; Yu, Lisan ; Hermes, Juliet ; Murtugudde, Raghu ; Tozuka, Tomoki ; Su, Danielle ; Singh, Arvind ; Centurioni, Luca R. ; Prakash, Satya ; Wiggert, Jerry D.Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and air–sea exchanges, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered that control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air–sea interactions, and climate variability. Coordinated international focus on the Indian Ocean has motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small-scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and interactions between the surface and the deep ocean. A newly discovered regional climate mode in the southeast Indian Ocean, the Ningaloo Niño, has instigated more regional air–sea coupling and marine heatwave research in the global oceans. In the last decade, we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean and have highlighted the critical role of the Indian Ocean as a clearing house for anthropogenic heat. This synthesis paper reviews the advances in these areas in the last decade.
-
ArticleA road map to IndOOS-2 better observations of the rapidly warming Indian Ocean(American Meteorological Society, 2020-11-01) Beal, Lisa M. ; Vialard, Jérôme ; Roxy, Mathew Koll ; Li, Jing ; Andres, Magdalena ; Annamalai, Hariharasubramanian ; Feng, Ming ; Han, Weiqing ; Hood, Raleigh R. ; Lee, Tong ; Lengaigne, Matthieu ; Lumpkin, Rick ; Masumoto, Yukio ; McPhaden, Michael J. ; Ravichandran, M. ; Shinoda, Toshiaki ; Sloyan, Bernadette M. ; Strutton, Peter G. ; Subramanian, Aneesh C. ; Tozuka, Tomoki ; Ummenhofer, Caroline C. ; Unnikrishnan, Shankaran Alakkat ; Wiggert, Jerry D. ; Yu, Lisan ; Cheng, Lijing ; Desbruyères, Damien G. ; Parvathi, V.The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.
-
ArticleA sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs(Frontiers Media, 2019-06-28) Hermes, Juliet ; Masumoto, Yukio ; Beal, Lisa M. ; Roxy, Mathew Koll ; Vialard, Jérôme ; Andres, Magdalena ; Annamalai, Hariharasubramanian ; Behera, Swadhin ; D’Adamo, Nick ; Doi, Takeshi ; Feng, Ming ; Han, Weiqing ; Hardman-Mountford, Nick ; Hendon, Harry ; Hood, Raleigh R. ; Kido, Shoichiro ; Lee, Craig M. ; Lee, Tong ; Lengaigne, Matthieu ; Li, Jing ; Lumpkin, Rick ; Navaneeth, K. N. ; Milligan, Ben ; McPhaden, Michael J. ; Ravichandran, M. ; Shinoda, Toshiaki ; Singh, Arvind ; Sloyan, Bernadette M. ; Strutton, Peter G. ; Subramanian, Aneesh C. ; Thurston, Sidney ; Tozuka, Tomoki ; Ummenhofer, Caroline C. ; Unnikrishnan, Shankaran Alakkat ; Venkatesan, Ramasamy ; Wang, Dongxiao ; Wiggert, Jerry D. ; Yu, Lisan ; Yu, WeidongThe Indian Ocean is warming faster than any of the global oceans and its climate is uniquely driven by the presence of a landmass at low latitudes, which causes monsoonal winds and reversing currents. The food, water, and energy security in the Indian Ocean rim countries and islands are intrinsically tied to its climate, with marine environmental goods and services, as well as trade within the basin, underpinning their economies. Hence, there are a range of societal needs for Indian Ocean observation arising from the influence of regional phenomena and climate change on, for instance, marine ecosystems, monsoon rains, and sea-level. The Indian Ocean Observing System (IndOOS), is a sustained observing system that monitors basin-scale ocean-atmosphere conditions, while providing flexibility in terms of emerging technologies and scientificand societal needs, and a framework for more regional and coastal monitoring. This paper reviews the societal and scientific motivations, current status, and future directions of IndOOS, while also discussing the need for enhanced coastal, shelf, and regional observations. The challenges of sustainability and implementation are also addressed, including capacity building, best practices, and integration of resources. The utility of IndOOS ultimately depends on the identification of, and engagement with, end-users and decision-makers and on the practical accessibility and transparency of data for a range of products and for decision-making processes. Therefore we highlight current progress, issues and challenges related to end user engagement with IndOOS, as well as the needs of the data assimilation and modeling communities. Knowledge of the status of the Indian Ocean climate and ecosystems and predictability of its future, depends on a wide range of socio-economic and environmental data, a significant part of which is provided by IndOOS.