Silverthorne
Katherine E.
Silverthorne
Katherine E.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleThe CLIMODE field campaign : observing the cycle of convection and restratification over the Gulf Stream(American Meteorological Society, 2009-09) Marshall, John C. ; Ferrari, Raffaele ; Forget, Gael ; Andersson, A. ; Bates, Nicholas R. ; Dewar, William K. ; Doney, Scott C. ; Fratantoni, David M. ; Joyce, Terrence M. ; Straneo, Fiamma ; Toole, John M. ; Weller, Robert A. ; Edson, James B. ; Gregg, M. C. ; Kelly, Kathryn A. ; Lozier, M. Susan ; Palter, Jaime B. ; Lumpkin, Rick ; Samelson, Roger M. ; Skyllingstad, Eric D. ; Silverthorne, Katherine E. ; Talley, Lynne D. ; Thomas, Leif N.A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results.
-
ArticleSeasonal kinetic energy variability of near-inertial motions(American Meteorological Society, 2009-04) Silverthorne, Katherine E. ; Toole, John M.Seasonal variability of near-inertial horizontal kinetic energy is examined using observations from a series of McLane Moored Profiler moorings located at 39°N, 69°W in the western North Atlantic Ocean in combination with a one-dimensional, depth-integrated kinetic energy model. The time-mean kinetic energy and shear vertical wavenumber spectra of the high-frequency motions at the mooring site are in reasonable agreement with the Garrett–Munk internal wave description. Time series of depth-dependent and depth-integrated near-inertial kinetic energy are calculated from available mooring data after filtering to isolate near-inertial-frequency motions. These data document a pronounced seasonal cycle featuring a wintertime maximum in the depth-integrated near-inertial kinetic energy deriving chiefly from the variability in the upper 500 m of the water column. The seasonal signal in the near-inertial kinetic energy is most prominent for motions with vertical wavelengths greater than 100 m but observable wintertime enhancement is seen down to wavelengths of the order of 10 m. Rotary vertical wavenumber spectra exhibit a dominance of clockwise-with-depth energy, indicative of downward energy propagation and implying a surface energy source. A simple depth-integrated near-inertial kinetic energy model consisting of a wind forcing term and a dissipation term captures the order of magnitude of the observed near-inertial kinetic energy as well as its seasonal cycle.
-
ThesisNear-inertial and thermal upper ocean response to atmospheric forcing in the North Atlantic Ocean(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-06) Silverthorne, Katherine E.Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of near-inertial motions observed with a moored profiler is described. Observed wintertime enhancement and surface intensification of near-inertial kinetic energy support previous work suggesting that near-inertial motions are predominantly driven by surface forcing. The wind energy input into surface ocean near-inertial motions is estimated using the Price-Weller- Pinkel (PWP) one-dimensional mixed layer model. A localized depth-integrated model consisting of a wind forcing term and a dissipation parameterization is developed and shown to have skill capturing the seasonal cycle and order of magnitude of the near-inertial kinetic energy. Focusing in on wintertime storm passage, velocity and density records from drifting profiling floats (EM-APEX) and a meteorological spar buoy/tethered profiler system (ASIS/FILIS) deployed in the Gulf Stream in February 2007 as part of the CLIvar MOde water Dynamics Experiment (CLIMODE) were analyzed. Despite large surface heat loss during cold air outbreaks and the drifting nature of the instruments, changes in the upper ocean heat content were found in a mixed layer heat balance to be controlled primarily by the relative advection of temperature associated with the strong vertical shear of the Gulf Stream. Velocity records from the Gulf Stream exhibited energetic near-inertial oscillations with frequency that was shifted below the local resting inertial frequency. This depression of frequency was linked to the presence of the negative vorticity of the background horizontal current shear, implying the potential for near-inertial wave trapping in the Gulf Stream region through the mechanism described by Kunze and Sanford (1984). Three-dimensional PWP model simulations show evidence of near-inertial wave trapping in the Gulf Stream jet, and are used to quantify the resulting mixing and the effect on the stratification in the Eighteen Degree Water formation region.