Fu Xiaojing

No Thumbnail Available
Last Name
Fu
First Name
Xiaojing
ORCID
0000-0001-7120-704X

Search Results

Now showing 1 - 2 of 2
  • Article
    Hydrate formation on marine seep bubbles and the implications for water column methane dissolution
    (American Geophysical Union, 2021-09-01) Fu, Xiaojing ; Waite, William F. ; Ruppel, Carolyn D.
    Methane released from seafloor seeps contributes to a number of benthic, water column, and atmospheric processes. At seafloor seeps within the methane hydrate stability zone, crystalline gas hydrate shells can form on methane bubbles while the bubbles are still in contact with the seafloor or as the bubbles begin ascending through the water column. These shells reduce methane dissolution rates, allowing hydrate-coated bubbles to deliver methane to shallower depths in the water column than hydrate-free bubbles. Here, we analyze seafloor videos from six deepwater seep sites associated with a diverse range of bubble-release processes involving hydrate formation. Bubbles that grow rapidly are often hydrate-free when released from the seafloor. As bubble growth slows and seafloor residence time increases, a hydrate coating can form on the bubble's gas-water interface, fully coating most bubbles within ∼10 s of the onset of hydrate formation at the seafloor. This finding agrees with water-column observations that most bubbles become hydrate-coated after their initial ∼150 cm of rise, which takes about 10 s. Whether a bubble is coated or not at the seafloor affects how much methane a bubble contains and how quickly that methane dissolves during the bubble's rise through the water column. A simplified model shows that, after rising 150 cm above the seafloor, a bubble that grew a hydrate shell before releasing from the seafloor will have ∼5% more methane than a bubble of initial equal volume that did not grow a hydrate shell after it traveled to the same height.
  • Article
    Xenon hydrate as an analog of methane hydrate in geologic systems out of thermodynamic equilibrium
    (American Geophysical Union, 2019-05-06) Fu, Xiaojing ; Waite, William F. ; Cueto‐Felgueroso, Luis ; Juanes, Ruben
    Methane hydrate occurs naturally under pressure and temperature conditions that are not straightforward to replicate experimentally. Xenon has emerged as an attractive laboratory alternative to methane for studying hydrate formation and dissociation in multiphase systems, given that it forms hydrates under milder conditions. However, building reliable analogies between the two hydrates requires systematic comparisons, which are currently lacking. We address this gap by developing a theoretical and computational model of gas hydrates under equilibrium and nonequilibrium conditions. We first compare equilibrium phase behaviors of the Xe·H2O and CH4·H2O systems by calculating their isobaric phase diagram, and then study the nonequilibrium kinetics of interfacial hydrate growth using a phase field model. Our results show that Xe·H2O is a good experimental analog to CH4·H2O, but there are key differences to consider. In particular, the aqueous solubility of xenon is altered by the presence of hydrate, similar to what is observed for methane; but xenon is consistently less soluble than methane. Xenon hydrate has a wider nonstoichiometry region, which could lead to a thicker hydrate layer at the gas‐liquid interface when grown under similar kinetic forcing conditions. For both systems, our numerical calculations reveal that hydrate nonstoichiometry coupled with hydrate formation dynamics leads to a compositional gradient across the hydrate layer, where the stoichiometric ratio increases from the gas‐facing side to the liquid‐facing side. Our analysis suggests that accurate composition measurements could be used to infer the kinetic history of hydrate formation in natural settings where gas is abundant.