Flores Claudia H.

No Thumbnail Available
Last Name
Flores
First Name
Claudia H.
ORCID

Search Results

Now showing 1 - 9 of 9
  • Preprint
    Geologic controls on submarine slope failure along the central U.S. Atlantic margin : insights from the Currituck Slide Complex
    ( 2016-10) Hill, Jenna C. ; Brothers, Daniel S. ; Craig, Bradley K. ; ten Brink, Uri S. ; Chaytor, Jason D. ; Flores, Claudia H.
    Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with highresolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (>8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (<6°). Thick (>800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a mechanism for compaction–induced overpressure that preconditioned the Currituck region for failure. Detailed examination of the regional geological framework illustrates the importance of both sediment supply and antecedent slope physiography in the development of large, potentially unstable depocenters along passive margins.
  • Article
    Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region
    (American Geophysical Union, 2011-12-29) ten Brink, Uri S. ; Bakun, William H. ; Flores, Claudia H.
    We evaluate the long-term seismic activity of the North-American/Caribbean plate boundary from 500 years of historical earthquake damage reports. The 2010 Haiti earthquakes and other earthquakes were used to derive regional attenuation relationships between earthquake intensity, magnitude, and distance from the reported damage to the epicenter, for Hispaniola and for Puerto Rico and the Virgin Islands. The attenuation relationship for Hispaniola earthquakes and northern Lesser Antilles earthquakes is similar to that for California earthquakes, indicating a relatively rapid attenuation of damage intensity with distance. Intensities in Puerto Rico and the Virgin Islands decrease less rapidly with distance. We use the intensity-magnitude relationships to systematically search for the location and intensity magnitude MI which best fit all the reported damage for historical earthquakes. Many events occurred in the 20th-century along the plate-boundary segment from central Hispaniola to the NW tip of Puerto Rico, but earlier events from this segment were not identified. The remaining plate boundary to the east to Guadeloupe is probably not associated with M > 8 historical subduction-zone earthquakes. The May 2, 1787 earthquake, previously assigned an M 8–8.25, is probably only MI 6.9 and could be located north, west or SW of Puerto Rico. An MI 6.9 earthquake on July 11, 1785 was probably located north or east of the Virgin Islands. We located MI < 8 historical earthquakes on April 5, 1690, February 8, 1843, and October 8, 1974 in the northern Lesser Antilles within the arc. We speculate that the December 2, 1562 (MI 7.7) and May 7, 1842 (MI 7.6) earthquakes ruptured the Septentrional Fault in northern Hispaniola. If so, the recurrence interval on the central Septentrional Fault is ∼300 years, and only 170 years has elapsed since the last event. The recurrence interval of large earthquakes along the Hispaniola subduction segment is likely longer than the historical record. Intra-arc M ≥ 7.0 earthquakes may occur every 75–100 years in the 410-km-long segment between the Virgin Islands and Guadeloupe.
  • Article
    Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault : implications for strain localization and crustal rigidity
    (American Geophysical Union, 2006-12-23) ten Brink, Uri S. ; Al-Zoubi, Abdallah S. ; Flores, Claudia H. ; Rotstein, Yair ; Qabbani, Isam ; Harder, Steven H. ; Keller, G. Randy
    New seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust.
  • Article
    Significant earthquakes on the Enriquillo Fault System, Hispaniola, 1500–2010 : implications for seismic hazard
    (Seismological Society of America, 2012-02) Bakun, William H. ; Flores, Claudia H. ; ten Brink, Uri S.
    Historical records indicate frequent seismic activity along the north-east Caribbean plate boundary over the past 500 years, particularly on the island of Hispaniola. We use accounts of historical earthquakes to assign intensities and the intensity assignments for the 2010 Haiti earthquakes to derive an intensity attenuation relation for Hispaniola. The intensity assignments and the attenuation relation are used in a grid search to find source locations and magnitudes that best fit the intensity assignments. Here we describe a sequence of devastating earthquakes on the Enriquillo fault system in the eighteenth century. An intensity magnitude MI 6.6 earthquake in 1701 occurred near the location of the 2010 Haiti earthquake, and the accounts of the shaking in the 1701 earthquake are similar to those of the 2010 earthquake. A series of large earthquakes migrating from east to west started with the 18 October 1751 MI 7.4–7.5 earthquake, probably located near the eastern end of the fault in the Dominican Republic, followed by the 21 November 1751 MI 6.6 earthquake near Port-au-Prince, Haiti, and the 3 June 1770 MI 7.5 earthquake west of the 2010 earthquake rupture. The 2010 Haiti earthquake may mark the beginning of a new cycle of large earthquakes on the Enriquillo fault system after 240 years of seismic quiescence. The entire Enriquillo fault system appears to be seismically active; Haiti and the Dominican Republic should prepare for future devastating earthquakes.
  • Article
    Observations of seismicity and ground motion in the Northeast U.S. Atlantic Margin from ocean‐bottom seismometer data
    (Seismological Society of America, 2016-11-02) Flores, Claudia H. ; ten Brink, Uri S. ; McGuire, Jeffrey J. ; Collins, John A.
    Earthquake data from two short‐period ocean‐bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.
  • Article
  • Article
    Geometry and subsidence history of the Dead Sea basin : a case for fluid-induced mid-crustal shear zone?
    (American Geophysical Union, 2012-01-13) ten Brink, Uri S. ; Flores, Claudia H.
    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8–8.5 km) and widest (~15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3–4 km under the northern end of the lake and 5–6 km farther north. Crystalline basement is ~11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ~18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ~17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux into a slowly extending continental crust can cause rapid basin subsidence that may be erroneously interpreted as an increased rate of tectonic activity.
  • Article
    Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin
    (John Wiley & Sons, 2014-01-08) Brothers, Daniel S. ; Ruppel, Carolyn D. ; Kluesner, Jared W. ; ten Brink, Uri S. ; Chaytor, Jason D. ; Hill, Jenna C. ; Andrews, Brian D. ; Flores, Claudia H.
    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.
  • Article
    Crustal structure across the central Dead Sea Transform and surrounding areas: insights into tectonic processes in continental transforms
    (Wiley, 2023-07-19) ten Brink, Uri S. ; Levi, Eldad ; Flores, Claudia H. ; Koulakov, Ivan ; Bronshtein, N. ; Ben-Avraham, Zvi
    New geophysical profiles across the central Dead Sea Transform (DST) near the Sea of Galilee, Israel, and surrounding highlands, augmented by static stress modeling, allow us to study continental transform plate deformation. The DST separates a ∼10 km thick sedimentary column above a thinned (16–23 km) crust to the west from a ∼7 km column above a ∼30-km thick crust to the east. Crustal thinning starts under the DST, as observed also farther south, indicating that the DST is indeed located along the boundary between the Arabian plate and its continental margin. Moho step here is gradual. The DST's eastern shoulder dips westward toward the DST unlike the upward flexed shoulder observed farther south, perhaps delineating the northern limit of a thinner and hotter lithosphere. The shape of the Sea of Galilee is modeled as an asymmetric pull-apart basin formed by a left-lateral stepover of 2.6 km between slightly divergent and underlapping strike-slip fault strands dipping 70° to the west. Reflection data indicate that these strands are not connected. Several fault traces within the Sea of Galilee have previously been suggested to carry part of the relative plate motion. However, given slip along the main DST faults, Coulomb stress will increase only on fault portions in the northern part of the lake, in accord with the geographical distribution of seismicity, suggesting that these faults are likely secondary. Mismatch between the DST strand locations in the geophysical profiles and the subsidence model, may reflect temporal changes in fault geometry.