Clemens Steven C.

No Thumbnail Available
Last Name
Clemens
First Name
Steven C.
ORCID
0000-0002-1136-7815

Search Results

Now showing 1 - 1 of 1
  • Preprint
    Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle
    ( 2008-09) Sun, Youbin ; Wu, Feng ; Clemens, Steven C. ; Oppo, Delia W.
    Sediments of the upper 28.2 meters of Ocean Drilling Program (ODP) Site 1145 from the northern South China Sea (SCS) were analyzed for their geochemical composition. Most of the major and trace elements exhibit significant fluctuations at glacial-interglacial scales, implying a close relation with regional and global climate change. Al-normalized elemental ratios can be subdivided into three principal components (PC). PC1 (e.g., Ca/Al, Ba/Al, Sr/Al) displays significant glacial-interglacial variation and is related to paleoproductivity in the northern SCS. PC2 (e.g., K/Al, Mg/Al, Rb/Al) is associated with the degree of chemical weathering in the source regions and shows little glacial-interglacial variation. PC3 (e.g., Ti/Al, Zr/Al) reflects the relative contribution of coarse- and fine-grained materials in the terrigenous components of the SCS sediments, likely associated with changes in sea level and monsoon-induced fluvial input. Spectral analyses indicate that paleoproductivity (i.e., Ba/Al) in the South China Sea lags Hulu/Sanbao speleothem δ18O record (a indicator of annual average meteoric precipitation) by 102° and Indian summer monsoon (multi-proxy stack) by 23° at the precession band, indicating a close relationship with the Indian summer monsoon. However, the chemical weathering degree in the source area (PC2) is not sensitive to monsoon-related changes at the precession band during the last climatic cycle.