Schlitz Ronald J.

No Thumbnail Available
Last Name
Schlitz
First Name
Ronald J.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Technical Report
    Nantucket shoals flux experiment (NSFE79) : part 2, moored array data report
    (Woods Hole Oceanographic Institution, 1983-11) Beardsley, Robert C. ; Alessi, Carol A. ; Vermersch, John A. ; Brown, W. Steven ; Pettigrew, Neal R. ; Irish, James D. ; Ramp, Steven R. ; Schlitz, Ronald J. ; Butman, Bradford
    The Nantucket Shoals Flux Experiment (NSFE79) was conducted across the continental shelf and upper slope south of Nantucket from March, 1979 to April , 1980 to measure the flow of shelf water from the Georges Bank/Gulf of Maine region into the Middle Atlantic Bight. Conceived as a cooperative field experiment involving the Northeast Fisheries Center (NMFS), U.S. Geological Survey (Woods Hole), University of New Hampshire, and the Woods Hole Oceanographic Institution, the experiment contained two principal components, a moored array of current meter and bottom instrumentation deployed at six locations across the shelf and upper slope spanning a depth range from 46 m to 810 m, and a series of 27 hydrographic surveys made along or near the moored array line during the experiment. A basic description of the NSFE79 hydrographic data has been given in Part 1 by Wright (1983). A description of the moored array components and the basic moored array data sets is presented here in Part 2.
  • Article
    Wind-induced, cross-frontal exchange on Georges Bank : a mechanism for early summer on-bank biological particle transport
    (American Geophysical Union, 2003-11-29) Chen, Changsheng ; Schlitz, Ronald J. ; Lough, R. Gregory ; Smith, Keston W. ; Beardsley, Robert C. ; Manning, James P.
    Water exchange across the tidal-mixing front on the southern flank of Georges Bank (GB) is examined using a two-dimensional (2D) primitive equation ocean model. The model domain features a cross-frontal transect including a June 1999 hydrographic (CTD)/ADCP study made as part of the U.S. GLOBEC Northwest Atlantic/Georges Bank program. The model was initialized with temperature and salinity fields taken on the 15 June 1999 CTD section and run prognostically with tidal forcing, measured winds, and representative surface heat flux. The results show that fluctuations of wind plus tidal mixing can play the following essential role in the short-term transport of water and particles from the stratified region to the mixed region on GB in early summer, when stratification is just developing with a weak thermocline at a depth of about 10 m. First, a passing weather front drives a wind-induced on-bank Ekman transport of the upper part of the water column at the tidal-mixing front and associated particles in the surface mixed layer. Then, when the wind relaxes or changes direction, the water in the on-bank extension of the front (above the thermocline) mixes quickly through enhanced tidal motion in shallower depths of water. As a result, particles that are advected along the extended front stay in the previously well-mixed region of the bank. Surface heating tends to increase the strength of the thermocline and reduce the thickness of the surface mixed layer. This in turn accelerates the on-bank movement of the front under an easterly wind favorable for Ekman transport and thus enhances the on-bank, cross-frontal transport of particles. Since the wind-induced, cross-frontal on-bank transport of water can occur episodically during passages of meteorological fronts, these could produce a larger net cross-frontal flux than that produced by just tidal forcing on equivalent timescales. Therefore wind-induced processes can be important in the on-bank cross-frontal flux of copepods and other zooplankton species that exhibit shallow maxima in their vertical distributions over the southern flank of GB in early summer.