Gopalakrishnan Ganesh

No Thumbnail Available
Last Name
Gopalakrishnan
First Name
Ganesh
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea
    (American Meteorological Society, 2021-01-01) Hoteit, Ibrahim ; Abualnaja, Yasser ; Afzal, Shehzad ; Ait-El-Fquih, Boujemaa ; Akylas, Triantaphyllos ; Antony, Charls ; Dawson, Clint N. ; Asfahani, Khaled ; Brewin, Robert J. W. ; Cavaleri, Luigi ; Cerovecki, Ivana ; Cornuelle, Bruce D. ; Desamsetti, Srinivas ; Attada, Raju ; Dasari, Hari ; Sanchez-Garrido, Jose ; Genevier, Lily ; El Gharamti, Mohamad ; Gittings, John A. ; Gokul, Elamurugu ; Gopalakrishnan, Ganesh ; Guo, Daquan ; Hadri, Bilel ; Hadwiger, Markus ; Hammoud, Mohammed Abed ; Hendershott, Myrl ; Hittawe, Mohamad ; Karumuri, Ashok ; Knio, Omar ; Kohl, Armin ; Kortas, Samuel ; Krokos, George ; Kunchala, Ravi ; Issa, Leila ; Lakkis, Issam ; Langodan, Sabique ; Lermusiaux, Pierre F. J. ; Luong, Thang ; Ma, Jingyi ; Le Maitre, Olivier ; Mazloff, Matthew R. ; El Mohtar, Samah ; Papadopoulos, Vassilis P. ; Platt, Trevor ; Pratt, Lawrence J. ; Raboudi, Naila ; Racault, Marie-Fanny ; Raitsos, Dionysios E. ; Razak, Shanas ; Sanikommu, Sivareddy ; Sathyendranath, Shubha ; Sofianos, Sarantis S. ; Subramanian, Aneesh C. ; Sun, Rui ; Titi, Edriss ; Toye, Habib ; Triantafyllou, George ; Tsiaras, Kostas ; Vasou, Panagiotis ; Viswanadhapalli, Yesubabu ; Wang, Yixin ; Yao, Fengchao ; Zhan, Peng ; Zodiatis, George
    The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.
  • Article
    Seasonal overturning circulation in the Red Sea : 2. Winter circulation
    (John Wiley & Sons, 2014-04-14) Yao, Fengchao ; Hoteit, Ibrahim ; Pratt, Lawrence J. ; Bower, Amy S. ; Kohl, Armin ; Gopalakrishnan, Ganesh ; Rivas, David
    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.
  • Article
    Structure and evolution of the cold dome off northeastern Taiwan : a numerical study
    (The Oceanography Society, 2013-03) Gopalakrishnan, Ganesh ; Cornuelle, Bruce D. ; Gawarkiewicz, Glen G. ; McClean, Julie L.
    Numerous observational and modeling studies of ocean circulation surrounding Taiwan have reported occurrences of cold water and doming of isotherms (called the cold dome) that result in the formation of coastal upwelling on the northeastern Taiwan shelf. We use a high-resolution (1/24°) ocean model based on the Massachusetts Institute of Technology general circulation model to study the evolution of this distinct shelf-slope circulation phenomenon. We performed a number of model simulations spanning a five-year period (2004–2008) using realistic atmospheric forcing and initial and open boundary conditions. The model solutions were compared with satellite measurements of sea surface height (SSH), sea surface temperature (SST), and historical temperature and salinity observations. The model showed a realistically shaped cold dome with a diameter of ~ 100 km and temperature of ~ 3°C below the ambient shelf waters at 50 m depth. The occurrences of simulated cold dome events appeared to be connected with the seasonal variability of the Kuroshio Current. The model simulations showed more upwelling events during spring and summer when the core of the Kuroshio tends to migrate away from the east coast of Taiwan, compared to fall and winter when the core of the Kuroshio is generally found closer to the east coast of Taiwan. The model also reproduced weak cyclonic circulation associated with the upwelling off northeastern Taiwan. We analyzed the spatio-temporal variability of the cold dome using the model solution as a proxy and designed a "cold dome index" based on the temperature at 50 m depth averaged over a 0.5° × 0.5° box centered at 25.5°N, 122°E. The cold dome index correlates with temperature at 50 m depth in a larger region, suggesting the spatial extent of the cold dome phenomenon. The index had correlation maxima of 0.78 and 0.40 for simulated SSH and SST, respectively, in and around the cold dome box region, and we hypothesize that it is a useful indicator of upwelling off northeastern Taiwan. In addition, both correlation and composite analysis between the temperature at 50 m depth and the East Taiwan Channel transport showed no cold dome events during low-transport events (often in winter) and more frequent cold dome events during high-transport events (often in summer). The simulated cold dome events had time scales of about two weeks, and their centers aligned roughly along a northeastward line starting from the northeastern tip of Taiwan.
  • Article
    Circulation and intrusions northeast of Taiwan : chasing and predicting uncertainty in the cold dome
    (The Oceanography Society, 2011-12) Gawarkiewicz, Glen G. ; Jan, Sen ; Lermusiaux, Pierre F. J. ; McClean, Julie L. ; Centurioni, Luca R. ; Taylor, Kevin ; Cornuelle, Bruce D. ; Duda, Timothy F. ; Wang, Joe ; Yang, Yiing-Jang ; Sanford, Thomas B. ; Lien, Ren-Chieh ; Lee, Craig M. ; Lee, Ming-An ; Leslie, Wayne ; Haley, Patrick J. ; Niiler, Pearn P. ; Gopalakrishnan, Ganesh ; Velez-Belchi, Pedro ; Lee, Dong-Kyu ; Kim, Yoo Yin
    An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the "cold dome" frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome's dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broad-scale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7–8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.
  • Article
    Seasonal overturning circulation in the Red Sea : 1. Model validation and summer circulation
    (John Wiley & Sons, 2014-04-14) Yao, Fengchao ; Hoteit, Ibrahim ; Pratt, Lawrence J. ; Bower, Amy S. ; Kohl, Armin ; Gopalakrishnan, Ganesh ; Rivas, David
    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.
  • Article
    Assessment of numerical simulations of deep circulation and variability in the Gulf of Mexico using recent observations
    (American Meteorological Society, 2020-04-08) Morey, Steven L. ; Gopalakrishnan, Ganesh ; Pallás-Sanz, Enric ; Azevedo Correia De Souza, Joao Marcos ; Donohue, Kathleen A. ; Pérez-Brunius, Paula ; Dukhovskoy, Dmitry S. ; Chassignet, Eric P. ; Cornuelle, Bruce D. ; Bower, Amy S. ; Furey, Heather H. ; Hamilton, Peter ; Candela, Julio
    Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (>1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
  • Article
    The Kuroshio and Luzon Undercurrent east of Luzon Island
    (The Oceanography Society, 2015-12) Lien, Ren-Chieh ; Ma, Barry ; Lee, Craig M. ; Sanford, Thomas B. ; Mensah, Vigan ; Centurioni, Luca R. ; Cornuelle, Bruce D. ; Gopalakrishnan, Ganesh ; Gordon, Arnold L. ; Chang, Ming-Huei ; Jayne, Steven R. ; Yang, Yiing-Jang
    Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.