(IEEE, 2007-01)
Leonard, Naomi Ehrich; Paley, Derek A.; Lekien, Francois; Sepulchre, Rodolphe; Fratantoni, David M.; Davis, Russ E.
This paper addresses the design of mobile sensor
networks for optimal data collection. The development is
strongly motivated by the application to adaptive ocean
sampling for an autonomous ocean observing and prediction
system. A performance metric, used to derive optimal paths for
the network of mobile sensors, defines the optimal data set as
one which minimizes error in a model estimate of the sampled
field. Feedback control laws are presented that stably coordinate
sensors on structured tracks that have been optimized
over a minimal set of parameters. Optimal, closed-loop solutions
are computed in a number of low-dimensional cases to
illustrate the methodology. Robustness of the performance to
the influence of a steady flow field on relatively slow-moving
mobile sensors is also explored.