Gaetani Glenn A.

No Thumbnail Available
Last Name
Gaetani
First Name
Glenn A.
ORCID
0000-0002-6026-2534

Search Results

Now showing 1 - 12 of 12
  • Preprint
    Factors affecting B/Ca ratios in synthetic aragonite
    ( 2015-09) Holcomb, Michael ; DeCarlo, Thomas M. ; Gaetani, Glenn A. ; McCulloch, Malcolm
    Measurements of B/Ca ratios in marine carbonates have been suggested to record seawater carbonate chemistry, however experimental calibration of such proxies based on inorganic partitioning remains limited. Here we conducted a series of synthetic aragonite precipitation experiments to evaluate the factors influencing the partitioning of B/Ca between aragonite and seawater. Our results indicate that the B/Ca ratio of synthetic aragonites depends primarily on the relative concentrations of borate and carbonate ions in the solution from which the aragonite precipitates; not on bicarbonate concentration as has been previously suggested. The influence of temperature was not significant over the range investigated (20 – 40°C), however, partitioning may be influenced by saturation state (and/or growth rate). Based on our experimental results, we suggest that aragonite B/Ca ratios can be utilized as a proxy of [CO32-]. Boron isotopic composition (δ11B) is an established pH proxy, thus B/Ca and δ11B together allow the full carbonate chemistry of the solution from which the aragonite precipitated to be calculated. To the extent that aragonite precipitation by marine organisms is affected by seawater chemistry, B/Ca may also prove useful in reconstructing seawater chemistry. A simplified boron purification protocol based on amberlite resin and the organic buffer TRIS is also described.
  • Article
    Halogen (F, Cl) concentrations and Sr-Nd-Pb-B isotopes of the basaltic andesites from the southern Okinawa Trough: implications for the recycling of subducted serpentinites
    (American Geophysical Union, 2021-03-12) Zhang, Yuxiang ; Gaetani, Glenn A. ; Zeng, Zhigang ; Monteleone, Brian D. ; Yin, Xuebo ; Wang, Xiaoyuan ; Chen, Shuai
    Serpentinites are increasingly recognized as playing an important role in the global geochemical cycle. However, discriminating the contributions of serpentinites to arc magmas from those of other subduction components is challenging. The Okinawa Trough is a back-arc basin developed behind the Ryukyu subduction zone, where magmas are extensively affected by sediment subduction. In this study, we reported the F-Cl concentrations and Sr-Nd-Pb-B isotopes of basaltic andesites from the Yaeyama Graben, Yonaguni Graben, and Irabu Knoll in the southern Okinawa Trough. The Irabu Knoll lavas show the most enrichment of fluid-mobile elements and F ± Cl, and have the heaviest B isotopes (δ11B: +6.6 ± 1.5‰). They also have decoupled Sr-Nd isotopes: higher 87Sr/86Sr (∼0.7049) but have no obvious decrease of 143Nd/144Nd (∼0.5128). Results from slab dehydration modeling and mixing calculations suggest that the heavy δ11B in the Irabu Knoll lavas is not consistent with fluids derived from altered oceanic crust (AOC), sediments, or wedge serpentinites (formed in the mantle wedge), but rather from slab serpentinites (formed within the subducting plate); sediments control the subduction input of Nd, whereas the decoupled Sr-Nd isotopes are most likely due to the excess radiogenic Sr carried by AOC fluids. Our results imply that recycling of serpentinite fluids and AOC fluids are usually coupled in subduction zones, as the arc lavas influenced by subducted serpentinite generally show Sr-Nd isotopes decoupling. The large variation of Sr-Nd-B isotopes observed in a relatively localized area is consistent with a focused migration through the mantle wedge of components from multiple sources.
  • Preprint
    Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X
    ( 2016-02-12) Hart, Stanley R. ; Gaetani, Glenn A.
    We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250–1523 °C, pressures of 1.0–3.5 GPa and oxygen fugacities at iron–wustite and wustite–magnetite. The total observed range of KdPb is 4.0–66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2–39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 − 119*P in GPa)*(1/FeO − 0.021). We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the “natural” partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.
  • Article
    Serpentinite-derived slab fluids control the oxidation state of the subarc mantle
    (American Association for the Advancement of Science, 2021-11-26) Zhang, Yuxiang ; Gazel, Esteban ; Gaetani, Glenn A. ; Klein, Frieder
    Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
  • Article
    Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater : insights into the biomineralization response to ocean acidification
    (American Geophysical Union, 2009-07-24) Cohen, Anne L. ; McCorkle, Daniel C. ; de Putron, Samantha J. ; Gaetani, Glenn A. ; Rose, Kathryn A.
    We reared primary polyps (new recruits) of the common Atlantic golf ball coral Favia fragum for 8 days at 25°C in seawater with aragonite saturation states ranging from ambient (Ω = 3.71) to strongly undersaturated (Ω = 0.22). Aragonite was accreted by all corals, even those reared in strongly undersaturated seawater. However, significant delays, in both the initiation of calcification and subsequent growth of the primary corallite, occurred in corals reared in treatment tanks relative to those grown at ambient conditions. In addition, we observed progressive changes in the size, shape, orientation, and composition of the aragonite crystals used to build the skeleton. With increasing acidification, densely packed bundles of fine aragonite needles gave way to a disordered aggregate of highly faceted rhombs. The Sr/Ca ratios of the crystals, measured by SIMS ion microprobe, increased by 13%, and Mg/Ca ratios decreased by 45%. By comparing these variations in elemental ratios with results from Rayleigh fractionation calculations, we show that the observed changes in crystal morphology and composition are consistent with a >80% decrease in the amount of aragonite precipitated by the corals from each “batch” of calcifying fluid. This suggests that the saturation state of fluid within the isolated calcifying compartment, while maintained by the coral at levels well above that of the external seawater, decreased systematically and significantly as the saturation state of the external seawater decreased. The inability of the corals in acidified treatments to achieve the levels of calcifying fluid supersaturation that drive rapid crystal growth could reflect a limit in the amount of energy available for the proton pumping required for calcification. If so, then the future impact of ocean acidification on tropical coral ecosystems may depend on the ability of individuals or species to overcome this limitation and achieve the levels of calcifying fluid supersaturation required to ensure rapid growth.
  • Article
    Twentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry
    (John Wiley & Sons, 2017-02-16) Alpert, Alice ; Cohen, Anne L. ; Oppo, Delia W. ; DeCarlo, Thomas M. ; Gaetani, Glenn A. ; Hernandez-Delgado, Edwin A. ; Winter, Amos ; Gonneea, Meagan E.
    Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P < 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
  • Article
    In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites
    (American Geophysical Union, 2011-03-01) Gabitov, R. I. ; Schmitt, A. K. ; Rosner, Martin ; McKeegan, K. D. ; Gaetani, Glenn A. ; Cohen, Anne L. ; Watson, E. B. ; Harrison, T. M.
    In situ secondary ion mass spectrometry (SIMS) analyses of δ7Li, Li/Ca, and Mg/Ca were performed on five synthetic aragonite samples precipitated from seawater at 25°C at different rates. The compositions of δ7Li in bulk aragonites and experimental fluids were measured by multicollector inductively coupled plasma–mass spectrometry (MC-ICP-MS). Both techniques yielded similar δ7Li in aragonite when SIMS analyses were corrected to calcium carbonate reference materials. Fractionation factors α7Li/6Li range from 0.9895 to 0.9923, which translates to a fractionation between aragonite and fluid from −10.5‰ to −7.7‰. The within-sample δ7Li range determined by SIMS is up to 27‰, exceeding the difference between bulk δ7Li analyses of different aragonite precipitates. Moreover, the centers of aragonite hemispherical bundles (spherulites) are enriched in Li/Ca and Mg/Ca relative to spherulite fibers by up to factors of 2 and 8, respectively. The Li/Ca and Mg/Ca ratios of spherulite fibers increase with aragonite precipitation rate. These results suggest that precipitation rate is a potentially important consideration when using Li isotopes and elemental ratios in natural carbonates as a proxy for seawater composition and temperature.
  • Article
    The electrical structure of the central Pacific upper mantle constrained by the NoMelt experiment
    (John Wiley & Sons, 2015-04-18) Sarafian, Emily K. ; Evans, Rob L. ; Collins, John A. ; Elsenbeck, James R. ; Gaetani, Glenn A. ; Gaherty, James B. ; Hirth, Greg ; Lizarralde, Daniel
    The NoMelt experiment imaged the mantle beneath 70 Ma Pacific seafloor with the aim of understanding the transition from the lithosphere to the underlying convecting asthenosphere. Seafloor magnetotelluric data from four stations were analyzed using 2-D regularized inverse modeling. The preferred electrical model for the region contains an 80 km thick resistive (>103 Ωm) lithosphere with a less resistive (∼50 Ωm) underlying asthenosphere. The preferred model is isotropic and lacks a highly conductive (≤10 Ωm) layer under the resistive lithosphere that would be indicative of partial melt. We first examine temperature profiles that are consistent with the observed conductivity profile. Our profile is consistent with a mantle adiabat ranging from 0.3 to 0.5°C/km. A choice of the higher adiabatic gradient means that the observed conductivity can be explained solely by temperature. In contrast, a 0.3°C/km adiabat requires an additional mechanism to explain the observed conductivity profile. Of the plausible mechanisms, H2O, in the form of hydrogen dissolved in olivine, is the most likely explanation for this additional conductivity. Our profile is consistent with a mostly dry lithosphere to 80 km depth, with bulk H2O contents increasing to between 25 and 400 ppm by weight in the asthenosphere with specific values dependent on the choice of laboratory data set of hydrous olivine conductivity and the value of mantle oxygen fugacity. The estimated H2O contents support the theory that the rheological lithosphere is a result of dehydration during melting at a mid-ocean ridge with the asthenosphere remaining partially hydrated and weakened as a result.
  • Article
    Compositional variability in a cold-water scleractinian, Lophelia pertusa : new insights into “vital effects”
    (American Geophysical Union, 2006-12-15) Cohen, Anne L. ; Gaetani, Glenn A. ; Lundalv, Tomas ; Corliss, Bruce H. ; George, Robert Y.
    We analyzed Sr/Ca and Mg/Ca ratios in the thecal wall of Lophelia pertusa, a cold-water coral, using SIMS ion microprobe techniques. The wall grows by simultaneous upward extension and outward thickening. Compositional variability displays similar trends along the upward and outward growth axes. Sr/Ca and Mg/Ca ratios oscillate systematically and inversely. The sensitivity of Lophelia Sr/Ca ratios to the annual temperature cycle (−0.18 mmol · mol−1/°C) is twice as strong as that exhibited by tropical reef corals, and four times as strong as the temperature dependence of Sr/Ca ratios of abiogenic aragonites precipitated experimentally from seawater. A comparison of the skeletal composition of Lophelia with results from precipitation calculations carried out using experimentally determined partition coefficients suggests that both temperature-dependent element partitioning and seasonal changes in the mass fraction of aragonite precipitated from the calcifying fluid influence the composition of Lophelia skeleton. Results from calculations that combine these effects reproduce both the exaggerated amplitude of the Sr/Ca and Mg/Ca oscillations and the inverse relationship between Sr/Ca and Mg/Ca ratios.
  • Article
    Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite
    (John Wiley & Sons, 2016-08-31) Miller, Kevin J. ; Zhu, Wenlu ; Montesi, Laurent G. J. ; Gaetani, Glenn A. ; Le Roux, Véronique ; Xiao, Xianghui
    Observations of dunite channels in ophiolites and uranium series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. We present experimental evidence that spatial variations in mineralogy can also focus melt on the grain scale. This lithologic melt partitioning, which results from differences in the interfacial energies associated with olivine-melt and orthopyroxene-melt boundaries, may complement other melt focusing mechanisms in the upper mantle such as mechanical shear and pyroxene dissolution. We document here lithologic melt partitioning in olivine-/orthopyroxene-basaltic melt samples containing nominal olivine to orthopyroxene ratio of 3 to 2 and melt fractions of 0.02 to 0.20. Experimental samples were imaged using synchrotron-based X-ray microcomputed tomography at a resolution of 700 nm per voxel. By analyzing the local melt fraction distributions associated with olivine and orthopyroxene grains in each sample, we found that the melt partitioning coefficient, i.e., the ratio of melt fraction around olivine to that around orthopyroxene grains, varies between 1.1 and 1.6. The permeability and electrical conductivity of our digital samples were estimated using numerical models and compared to those of samples containing only olivine and basaltic melt. Our results suggest that lithologic melt partitioning and preferential localization of melt around olivine grains might play a role in melt focusing, potentially enhancing average melt ascent velocities.
  • Article
    Coral Sr-U thermometry
    (John WIley & Sons, 2016-06-11) DeCarlo, Thomas M. ; Gaetani, Glenn A. ; Cohen, Anne L. ; Foster, Gavin L. ; Alpert, Alice ; Stewart, Joseph A.
    Coral skeletons archive past climate variability with unrivaled temporal resolution. However, extraction of accurate temperature information from coral skeletons has been limited by “vital effects,” which confound, and sometimes override, the temperature dependence of geochemical proxies. We present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. DeCarlo et al. (2015a) investigated temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater and modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, which we refer to hereafter as the Sr-U thermometer. Here we test the model predictions with measured Sr/Ca and U/Ca ratios of 14 Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. By calibrating to instrumental temperature records, we show that Sr-U captures 93% of mean annual temperature variability (26–30°C) and has a standard deviation of prediction of 0.5°C, compared to 1°C using Sr/Ca alone. The Sr-U thermometer may offer significantly improved reliability for reconstructing past ocean temperatures from coral skeletons.
  • Preprint
    Mantle Pb paradoxes : the sulfide solution
    ( 2006-04-08) Hart, Stanley R. ; Gaetani, Glenn A.
    There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.