Wang
Kexiong
Wang
Kexiong
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintAuditory temporal resolution and evoked responses to pulsed sounds for the Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis)( 2011-08-09) Mooney, T. Aran ; Li, Songhai ; Ketten, Darlene R. ; Wang, Kexiong ; Wang, DingTemporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (i) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (ii) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1250 Hz, after which response amplitudes declined until extinguished beyond 2500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well-suited to detect their unique echolocation signals.
-
ArticleHearing pathways in the Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis(Company of Biologists, 2013-10-18) Mooney, T. Aran ; Li, Songhai ; Ketten, Darlene R. ; Wang, Kexiong ; Wang, DingHow an animal receives sound may influence its use of sound. While ‘jaw hearing’ is well supported for odontocetes, work examining how sound is received across the head has been limited to a few representative species. The substantial variation in jaw and head morphology among odontocetes suggests variation in sound reception. Here, we address how a divergent subspecies, the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) hears low-, mid- and high-frequency tones, as well as broadband clicks, comparing sounds presented at different locations across the head. Hearing was measured using auditory evoked potentials (AEPs). Click and tone stimuli (8, 54 and 120 kHz) were presented at nine locations on the head and body using a suction-cup transducer. Threshold differences were compared between frequencies and locations, and referenced to the underlying anatomy using computed tomography (CT) imaging of deceased animals of the same subspecies. The best hearing locations with minimum thresholds were found adjacent to a mandibular fat pad and overlaying the auditory bulla. Mean thresholds were not substantially different at locations from the rostrum tip to the ear (11.6 dB). This contrasts with tests with bottlenose dolphins and beluga whales, in which 30–40 dB threshold differences were found across the animals' heads. Response latencies increased with decreasing response amplitudes, which suggests that latency and sensitivity are interrelated when considering sound reception across the odontocete head. The results suggest that there are differences among odontocetes in the anatomy related to receiving sound, and porpoises may have relatively less acoustic ‘shadowing’.