Prakash Satya

No Thumbnail Available
Last Name
Prakash
First Name
Satya
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    On the future of Argo: A global, full-depth, multi-disciplinary array
    (Frontiers Media, 2019-08-02) Roemmich, Dean ; Alford, Matthew H. ; Claustre, Hervé ; Johnson, Kenneth S. ; King, Brian ; Moum, James N. ; Oke, Peter ; Owens, W. Brechner ; Pouliquen, Sylvie ; Purkey, Sarah G. ; Scanderbeg, Megan ; Suga, Koushirou ; Wijffels, Susan E. ; Zilberman, Nathalie ; Bakker, Dorothee ; Baringer, Molly O. ; Belbeoch, Mathieu ; Bittig, Henry C. ; Boss, Emmanuel S. ; Calil, Paulo H. R. ; Carse, Fiona ; Carval, Thierry ; Chai, Fei ; Conchubhair, Diarmuid Ó. ; d’Ortenzio, Fabrizio ; Dall'Olmo, Giorgio ; Desbruyeres, Damien ; Fennel, Katja ; Fer, Ilker ; Ferrari, Raffaele ; Forget, Gael ; Freeland, Howard ; Fujiki, Tetsuichi ; Gehlen, Marion ; Geenan, Blair ; Hallberg, Robert ; Hibiya, Toshiyuki ; Hosoda, Shigeki ; Jayne, Steven R. ; Jochum, Markus ; Johnson, Gregory C. ; Kang, KiRyong ; Kolodziejczyk, Nicolas ; Körtzinger, Arne ; Le Traon, Pierre-Yves ; Lenn, Yueng-Djern ; Maze, Guillaume ; Mork, Kjell Arne ; Morris, Tamaryn ; Nagai, Takeyoshi ; Nash, Jonathan D. ; Naveira Garabato, Alberto C. ; Olsen, Are ; Pattabhi Rama Rao, Eluri ; Prakash, Satya ; Riser, Stephen C. ; Schmechtig, Catherine ; Schmid, Claudia ; Shroyer, Emily L. ; Sterl, Andreas ; Sutton, Philip J. H. ; Talley, Lynne D. ; Tanhua, Toste ; Thierry, Virginie ; Thomalla, Sandy J. ; Toole, John M. ; Troisi, Ariel ; Trull, Thomas W. ; Turton, Jon ; Velez-Belchi, Pedro ; Walczowski, Waldemar ; Wang, Haili ; Wanninkhof, Rik ; Waterhouse, Amy F. ; Waterman, Stephanie N. ; Watson, Andrew J. ; Wilson, Cara ; Wong, Annie P. S. ; Xu, Jianping ; Yasuda, Ichiro
    The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. Following recent advances in platform and sensor technologies, even greater opportunity exists now than 20 years ago to (i) improve Argo’s global coverage and value beyond the original design, (ii) extend Argo to span the full ocean depth, (iii) add biogeochemical sensors for improved understanding of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental sensors that might be included in the future, for example to document the spatial and temporal patterns of ocean mixing. For Core Argo and each of these enhancements, the past, present, and future progression along a path from experimental deployments to regional pilot arrays to global implementation is described. The objective is to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo Program that will integrate seamlessly with satellite and with other in situ elements of the Global Ocean Observing System (Legler et al., 2015). The integrated system will deliver operational reanalysis and forecasting capability, and assessment of the state and variability of the climate system with respect to physical, biogeochemical, and ecosystems parameters. It will enable basic research of unprecedented breadth and magnitude, and a wealth of ocean-education and outreach opportunities.
  • Article
    Progress in understanding of Indian Ocean circulation, variability, air-sea exchange, and impacts on biogeochemistry
    (European Geosciences Union, 2021-11-26) Phillips, Helen E. ; Tandon, Amit ; Furue, Ryo ; Hood, Raleigh R. ; Ummenhofer, Caroline C. ; Benthuysen, Jessica A. ; Menezes, Viviane V. ; Hu, Shijian ; Webber, Ben ; Sanchez-Franks, Alejandra ; Cherian, Deepak A. ; Shroyer, Emily L. ; Feng, Ming ; Wijesekera, Hemantha W. ; Chatterjee, Abhisek ; Yu, Lisan ; Hermes, Juliet ; Murtugudde, Raghu ; Tozuka, Tomoki ; Su, Danielle ; Singh, Arvind ; Centurioni, Luca R. ; Prakash, Satya ; Wiggert, Jerry D.
    Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and air–sea exchanges, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered that control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air–sea interactions, and climate variability. Coordinated international focus on the Indian Ocean has motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small-scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and interactions between the surface and the deep ocean. A newly discovered regional climate mode in the southeast Indian Ocean, the Ningaloo Niño, has instigated more regional air–sea coupling and marine heatwave research in the global oceans. In the last decade, we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean and have highlighted the critical role of the Indian Ocean as a clearing house for anthropogenic heat. This synthesis paper reviews the advances in these areas in the last decade.