De Batist
Marc
De Batist
Marc
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintReconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39°S( 2006-09-14) Bertrand, Sebastien ; Charlet, Francois ; Chapron, Emmanuel ; Fagel, Nathalie ; De Batist, MarcSouth-central Chile is one of the most geodynamically active areas in the world, characterised by frequent volcanic eruptions and numerous earthquakes, which are both recorded in lake sediments. In Lago Icalma (39°S), long piston and short gravity coring, as well as 3.5 kHz high-resolution seismic profiling, has been carried out in order to study the Holocene sedimentary infill of the lake, with a special focus on earthquake-triggered deposits. Macroscopic description of sediment cores and detailed grain-size analyses allow us to identify four types of seismically-induced deposits, or “seismites”: slump deposits, chaotic deposits, turbidites s.s. and homogenites. Homogenites are characterized by the occurrence of three distinct units on grain-size profiles (coarse base, thick homogenous unit topped by a thin layer of very fine sediment) and by the typical distribution of the grain-size parameters in a skewness-sorting diagram, while turbidites s.s. are characterized by a continuous fining upward trend. Radiocarbon, 210Pb dating, and tephrochronology allow us to demonstrate that the regional seismotectonic activity was probably very high between 2200 and 3000 cal. yr. BP as well as between 7000 and 8000 cal. yr. BP and that none of the historically documented earthquakes have triggered any seismite in Lago Icalma. The most recent seismite recognized in the sediments of Lago Icalma is a slump deposit dated at 1100 ± 100 AD, i.e. older than the period covered by historical records. The remarkable record of seismites between 2200 and 3000 cal. yr. BP is probably influenced by a major eruption of Sollipulli volcano at 3000 cal. yr. BP, which has rejuvenated the stock of terrigenous particles available for erosion, by depositing a thick layer of pumices all over the watershed of Lago Icalma and by clearing the vegetation covering the volcanic ash soils. This paper demonstrates that the record of seismically-triggered deposits in lake sediments is not only controlled by the intensity of the triggering earthquake and the occurrence of unstable sediment along the lake slopes but also by the presence of particles available for erosion/remobilisation in the watershed.
-
PreprintBulk organic geochemistry of sediments from Puyehue Lake and its watershed (Chile, 40°S) : implications for paleoenvironmental reconstructions( 2009-03-04) Bertrand, Sebastien ; Sterken, Mieke ; Vargas-Ramirez, Lourdes ; De Batist, Marc ; Vyverman, Wim ; Lepoint, Gilles ; Fagel, NathalieSince the last deglaciation, the mid-latitudes of the southern Hemisphere have undergone considerable environmental changes. In order to better understand the response of continental ecosystems to paleoclimate changes in southern South America, we investigated the sedimentary record of Puyehue Lake, located in the western piedmont of the Andes in south-central Chile (40°S). We analyzed the elemental (C, N) and stable isotopic (δ13C, δ15N) composition of the sedimentary organic matter preserved in the lake and its watershed to estimate the relative changes in the sources of sedimentary organic carbon through space and time. The geochemical signature of the aquatic and terrestrial end-members was determined on samples of lake particulate organic matter (N/C: 0.130) and Holocene paleosols (N/C: 0.069), respectively. A simple mixing equation based on the N/C ratio of these end-members was then used to estimate the fraction of terrestrial carbon (ƒT) preserved in the lake sediments. Our approach was validated using surface sediment samples, which show a strong relation between ƒT and distance to the main rivers and to the shore. We further applied this equation to an 11.22 m long sediment core to reconstruct paleoenvironmental changes in Puyehue Lake and its watershed during the last 17.9 kyr. Our data provide evidence for a first warming pulse at 17.3 cal kyr BP, which triggered a rapid increase in lake diatom productivity, lagging the start of a similar increase in sea surface temperature (SST) off Chile by 1500 years. This delay is best explained by the presence of a large glacier in the lake watershed, which delayed the response time of the terrestrial proxies and limited the concomitant expansion of the vegetation in the lake watershed (low ƒT). A second warming pulse at 12.8 cal kyr BP is inferred from an increase in lake productivity and a major expansion of the vegetation in the lake watershed, demonstrating that the Puyehue glacier had considerably retreated from the watershed. This second warming pulse is synchronous with a 2°C increase in SST off the coast of Chile, and its timing corresponds to the beginning of the Younger Dryas Chronozone. These results contribute to the mounting evidence that the climate in the mid-latitudes of the southern Hemisphere was warming during the Younger Dryas Chronozone, in agreement with the bipolar see-saw hypothesis.