Che-Castaldo Christian

No Thumbnail Available
Last Name
Che-Castaldo
First Name
Christian
ORCID
0000-0002-7670-2178

Search Results

Now showing 1 - 2 of 2
  • Article
    Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise
    (Nature Publishing Group, 2017-10-10) Che-Castaldo, Christian ; Jenouvrier, Stephanie ; Youngflesh, Casey ; Shoemaker, Kevin T. ; Humphries, Grant ; McDowall, Philip ; Landrum, Laura ; Holland, Marika M. ; Li, Yun ; Ji, Rubao ; Lynch, Heather J.
    Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982–2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide “year effects” strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.
  • Article
    Spatio-temporal transferability of environmentally-dependent population models: Insights from the intrinsic predictabilities of Adélie penguin abundance time series
    (Elsevier, 2023-04-19) Şen, Bilgecan ; Che-Castaldo, Christian ; Krumhardt, Kristen M. ; Landrum, Laura ; Holland, Marika M. ; LaRue, Michelle A. ; Long, Matthew C. ; Jenouvrier, Stéphanie ; Lynch, Heather J.
    Ecological predictions are necessary for testing whether processes hypothesized to regulate species population dynamics are generalizable across time and space. In order to demonstrate generalizability, model predictions should be transferable in one or more dimensions, where transferability is the successful prediction of responses outside of the model data bounds. While much is known as to what makes spatially-oriented models transferable, there is no general consensus as to the spatio-temporal transferability of ecological time series models. Here, we examine whether the intrinsic predictability of a time series, as measured by its complexity, could limit such transferability using an exceptional long-term dataset of Adélie penguin breeding abundance time series collected at 24 colonies around Antarctica. For each colony, we select a suite of environmental variables from the Community Earth System Model, version 2 to predict population growth rates, before assessing how well these environmentally-dependent population models transfer temporally and how reliably temporal signals replicate through space. We show that weighted permutation entropy (WPE), a model-free measure of intrinsic predictability recently introduced to ecology, varies spatially across Adélie penguin populations, perhaps in response to stochastic environmental events. We demonstrate that WPE can strongly limit temporal predictive performance, although this relationship could be weakened if intrinsic predictability is not constant over time. Lastly, we show that WPE can also limit spatial forecast horizon, which we define as the decay in spatial predictive performance with respect to the physical distance between focal colony and predicted colony. Irrespective of intrinsic predictability, spatial forecast horizons for all Adélie penguin breeding colonies included in this study are surprisingly short and our population models often have similar temporal and spatial predictive performance compared to null models based on long-term average growth rates. For cases where time series are complex, as measured by WPE, and the transferability of biologically-motivated mechanistic models are poor, we advise that null models should instead be used for prediction. These models are likely better at capturing more generalizable relationships between average growth rates and long-term environmental conditions. Lastly, we recommend that WPE can provide valuable insights when evaluating model performance, designing sampling or monitoring programs, or assessing the appropriateness of preexisting datasets for making conservation management decisions in response to environmental change.