Bahr
Frank B.
Bahr
Frank B.
No Thumbnail Available
32 results
Search Results
Now showing
1 - 20 of 32
-
ArticleIncreasing frequency of mid‐depth salinity maximum intrusions in the Middle Atlantic Bight(American Geophysical Union, 2022-06-22) Gawarkiewicz, Glen G. ; Fratantoni, Paula S. ; Bahr, Frank B. ; Ellertson, AubreyShelfbreak exchange processes have been studied extensively in the Middle Atlantic Bight. An important process occurring during stratified conditions is the Salinity Maximum Intrusion. These features are commonly observed at the depth of the seasonal pycnocline, and less frequently at the surface and bottom. Data collected from NOAA's National Marine Fisheries Service Ecosystem Monitoring program as well as data collected from the fishing industry in Rhode Island show that the middepth intrusions are now occurring much more frequently than was reported in a previous climatology of the intrusions (Lentz, 2003, https://doi.org/10.1029/2003JC001859). The intrusions have a greater salinity difference from ambient water and penetrate large distances shoreward of the shelf break relative to the earlier climatology. The longer term data from the Ecosystem Monitoring program indicates that the increase in frequency occurred in 2000, and thus may be linked to a recent regime shift in the annual formation rate of Warm Core Rings by the Gulf Stream. Given the increased frequency of these salty intrusions, it will be necessary to properly resolve this process in numerical simulations in order to account for salt budgets for the continental shelf and slope.
-
Technical ReportAcoustic doppler current profiling in the Western Pacific during the WOCE P10 cruise, November/December 1993(Woods Hole Oceanographic Institution, 1997-04) Bahr, Frank B. ; Joyce, Terrence M.The objective of this cruise was to occupy a hydrographic section nominally along 149E from Papua New Guinea to the shelf off the coast of Japan near Yokohama as part of the one-time WOCE Hydrographic Programe survey of the Pacific Ocean, line P10. This report describes the processing of shipboard acoustic Doppler current profier (ADCP) data that were collected during this cruise. New GPS-based heading measurements ("Ashtech heading"). which increase the accuracy of the ADCP, are covered in detail. A subset of the processed data from the New Guinea Coastal Undercurrent and from the Kuroshio is presented.
-
ArticleCirculation in the vicinity of Mackenzie Canyon from a year-long mooring array(Elsevier, 2020-07-04) Lin, Peigen ; Pickart, Robert S. ; Fissel, David ; Ross, Ed ; Kasper, Jeremy L. ; Bahr, Frank B. ; Torres, Daniel J. ; O’Brien, Jeff ; Borg, Keath ; Melling, Humfrey ; Wiese, Francis K.Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
-
ArticleContinuous flow of Upper Labrador Sea Water around Cape Hatteras(Nature Publishing Group, 2018-03-14) Andres, Magdalena ; Muglia, Michael ; Bahr, Frank B. ; Bane, John M.Six velocity sections straddling Cape Hatteras show a deep counterflow rounding the Cape wedged beneath the poleward flowing Gulf Stream and the continental slope. This counterflow is likely the upper part of the equatorward-flowing Deep Western Boundary Current (DWBC). Hydrographic data suggest that the equatorward flow sampled by the shipboard 38 kHz ADCP comprises the Upper Labrador Sea Water (ULSW) layer and top of the Classical Labrador Sea Water (CLSW) layer. Continuous DWBC flow around the Cape implied by the closely-spaced velocity sections here is also corroborated by the trajectory of an Argo float. These findings contrast with previous studies based on floats and tracers in which the lightest DWBC constituents did not follow the boundary to cross under the Gulf Stream at Cape Hatteras but were diverted into the interior as the DWBC encountered the Gulf Stream in the crossover region. Additionally, our six quasi-synoptic velocity sections confirm that the Gulf Stream intensified markedly at that time as it approached the separation point and flowed into deeper waters. Downstream increases were observed not only in the poleward transport across the sections but also in the current’s maximum speed.
-
Technical ReportLong-term evolution of the coupled boundary layers (STRATUS) mooring recovery and deployment cruise report NOAA Research Vessel R H Brown • cruise RB-01-08 9 October - 25 October 2001(Woods Hole Oceanographic Institution, 2002-02) Vallee, Charlotte ; Weller, Robert A. ; Bouchard, Paul R. ; Ostrom, William M. ; Lord, Jeffrey ; Gobat, Jason I. ; Pritchard, Mark ; Westberry, Toby K. ; Hare, Jeffrey E. ; Uttal, Taneil ; Yuter, Sandra ; Rivas, David ; Baumgardner, Darrel ; McCarty, Brandi ; Shannahoff, Jonathan ; Walsh, M. Alexander ; Bahr, Frank B.This report documents the work done on cruise RB-01-08 of the NOAA R/V Ron Brown. This was Leg 2 of R/V Ron Brown’s participation in Eastern Pacific Investigation of Climate (EPIC) 2001, a study of air-sea interaction, the atmosphere, and the upper ocean in the eastern tropical Pacific. The science party included groups from the Woods Hole Oceanographic Institution (WHOI), NOAA Environmental Technology Laboratory (ETL), the University of Washington (UW), the University of California, Santa Barbara (UCSB), and the University Nacional Autonoma de Mexico (UNAM). The work done by these groups is summarized in this report. In addition, the routine underway data collected while aboard R/V Ron Brown is also summarized here.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-4 2007 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2008-01) Whelan, Sean P. ; Plueddemann, Albert J. ; Lukas, Roger ; Lord, Jeffrey ; Lethaby, Paul ; Snyder, Jefrey ; Smith, Jason C. ; Bahr, Frank B. ; Galbraith, Nancy R. ; Sabine, Christopher L.The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first three WHOTS moorings (WHOTS-1 through 3) were deployed in August 2004, July 2005 and June 2006, respectively. This report documents recovery of the WHOTS-3 mooring and deployment of the fourth mooring (WHOTS-4). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOT-3 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-07-08, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 24 June and 1 July 2007. Operations began with deployment of the WHOTS-4 mooring on 25 June at approximately 22°40.2′N, 157°57.0′W in 4756 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-4 and WHOTS-3 sites. The WHOTS-3 mooring was recovered on June 28th followed by CTD operations at the HOT site and shipboard meteorological observations at several sites to the south of the mooring site. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
-
ArticleMean conditions and seasonality of the West Greenland boundary current system near Cape Farewell(American Meteorological Society, 2020-09-18) Pacini, Astrid ; Pickart, Robert S. ; Bahr, Frank B. ; Torres, Daniel J. ; Ramsey, Andree L. ; Holte, James W. ; Karstensen, Johannes ; Oltmanns, Marilena ; Straneo, Fiamma ; Le Bras, Isabela Astiz ; Moore, G. W. K. ; de Jong, Marieke FemkeThe structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
-
Technical ReportSubduction in the subtropical gyre : Seasoar cruises data report(Woods Hole Oceanographic Institution, 1995-09) Pallant, Julie S. ; Bahr, Frank B. ; Joyce, Terrence M. ; Dean, Jerome P. ; Luyten, James R.The overall objective of the Subduction Accelerated Research Initiative (ARI) was to bring together several techniques to address the formation and evolution of newly formed water masses. The Seasoar component provided surveys of temperature and salinity to help determine the spatial varability of the temperature, salinity and density fields in both the active frontal regions and in the vicinity of subducting water tagged by bobbers. Data were collected in the eastern North Atlantic Ocean in spring 1991, winter 1992, winter 1993 and spring 1994. "Star" patterns were used to study the mesoscale varability. Temperature, pressure and thickness for each pattern were objectively mapped on potential density surfaces of 26.5, 26.7 and 26.9 kg/m3. Acoustic Doppler Current Profies (ADCP) maps were also created for the the two shallower density surfaces. We describe the Seasoar data collected during the four cruises. A CD-Rom includes 1- and 3-second conductivity-temperature-depth (CTD), cruise navigation, ADCP and Seasoar engineering data, as well as color figures of these data. This data report can also be viewed using an internet information browser (i.e., Mosaic, Netscape) using the provided CD-Rom.
-
PreprintUpstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array( 2016-02-19) Harden, Benjamin E. ; Pickart, Robert S. ; Valdimarsson, Héðinn ; Våge, Kjetil ; de Steur, Laura ; Richards, Clark G. ; Bahr, Frank B. ; Torres, Daniel J. ; Børve, Eli ; Jonsson, Steingrimur ; Macrander, Andreas ; Østerhus, Svein ; Håvik, Lisbeth ; Hattermann, ToreWe present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-5 2008 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2009-04) Whelan, Sean P. ; Lord, Jeffrey ; Weller, Robert A. ; Lukas, Roger ; Santiago-Mandujano, Fernando ; Snyder, Jefrey ; Lethaby, Paul ; Bahr, Frank B. ; Sabine, Christopher L. ; Smith, Jason C. ; Bouchard, Paul R. ; Galbraith, Nancy R.The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first four WHOTS moorings (WHOTS-1 through 4) were deployed in August 2004, July 2005, June 2006, and June 2007, respectively. This report documents recovery of the WHOTS-4 mooring and deployment of the fifth mooring (WHOTS-5). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-5 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-08-08, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 3 and 11 June 2008. Operations began with deployment of the WHOTS-5 mooring on 5 June at approximately 22°46.1'N, 157°54.1'W in 4702 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-4 site. A period of calmer weather was taken advantage of to recover WHOTS-4 on 6 June 2008. The Kilo Moana then returned to the WHOTS-5 mooring for CTD operations and meteorological intercomparisons. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
-
ArticleCharacteristics and transformation of Pacific winter water on the Chukchi Sea shelf in late spring(American Geophysical Union, 2019-10-14) Pacini, Astrid ; Moore, G. W. K. ; Pickart, Robert S. ; Nobre, Carolina ; Bahr, Frank B. ; Vage, Kjetil ; Arrigo, Kevin R.Data from a late spring survey of the northeast Chukchi Sea are used to investigate various aspects of newly ventilated winter water (NVWW). More than 96% of the water sampled on the shelf was NVWW, the saltiest (densest) of which tended to be in the main flow pathways on the shelf. Nearly all of the hydrographic profiles on the shelf displayed a two‐layer structure, with a surface mixed layer and bottom boundary layer separated by a weak density interface (on the order of 0.02 kg/m3). Using a polynya model to drive a one‐dimensional mixing model, it was demonstrated that, on average, the profiles would become completely homogenized within 14–25 hr when subjected to the March and April heat fluxes. A subset of the profiles would become homogenized when subjected to the May heat fluxes. Since the study domain contained numerous leads within the pack ice—many of them refreezing—and since some of the measured profiles were vertically uniform in density, this suggests that NVWW is formed throughout the Chukchi shelf via convection within small openings in the ice. This is consistent with the result that the salinity signals of the NVWW along the central shelf pathway cannot be explained solely by advection from Bering Strait or via modification within large polynyas. The local convection would be expected to stir nutrients into the water column from the sediments, which explains the high nitrate concentrations observed throughout the shelf. This provides a favorable initial condition for phytoplankton growth on the Chukchi shelf.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-6 2009 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2010-02) Whelan, Sean P. ; Santiago-Mandujano, Fernando ; Bradley, Frank ; Plueddemann, Albert J. ; Barista, Ludovic ; Ryder, James R. ; Lukas, Roger ; Lethaby, Paul ; Snyder, Jefrey ; Sabine, Christopher L. ; Stanitski, Diane ; Rapp, Anita D. ; Fairall, Christopher W. ; Pezoa, Sergio ; Galbraith, Nancy R. ; Lord, Jeffrey ; Bahr, Frank B.The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaiian Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first WHOTS mooring (WHOTS-1) was deployed in August 2004. Turnaround cruises for successive moorings (WHOTS-2 through WHOTS-5) have typically been in either June or July. This report documents recovery of the WHOTS-5 mooring and deployment of the sixth mooring (WHOTS-6). The moorings utilize Surlyn foam buoys as the surface element and are outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the mooring is outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii (UH). A pCO2 system is installed on the buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. Dr. Frank Bradley, CSIRO, Australia, assisted with meteorological sensor comparisons. A NOAA “Teacher at Sea” and a NOAA “Teacher in the Lab” participated in the cruise. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-09-16, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution in cooperation with UH and NOAA’s Earth System Research Laboratory, Physical Sciences Division (ESRL/PSD). The cruise took place between 9 and 17 July 2009. Operations began with deployment of the WHOTS-6 mooring on 10 July at approximately 22°40.0'N, 157°57.0'W in 4758 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-6 and WHOTS-5 sites. The WHOTS-5 mooring was recovered on 15 July 2009. The Kilo Moana then moved to the HOT central site (22°45.0'N, 158°00.0'W) for CTD casts. This report describes the cruise operations in more detail, as well as some of the in-port operations and pre-cruise buoy preparations.
-
ArticleImproving LADCP velocity with external heading, pitch, and roll(American Meteorological Society, 2017-08-11) Thurnherr, Andreas M. ; Goszczko, Ilona ; Bahr, Frank B.Data collected with acoustic Doppler current profilers installed on CTD rosettes and lowered through the water column [lowered ADCP (LADCP) systems] are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP-derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (heading, pitch, and roll). Of particular concern are the heading measurements, because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship. Heading data from dual-headed LADCP systems, which consist of upward- and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10°. In an attempt to reduce LADCP velocity errors, several dozen profiles of simultaneous LADCP and magnetometer/accelerometer data were collected in the Gulf of Mexico. Agreement between the LADCP profiles and simultaneous shipboard velocity measurements improves significantly when the former are processed with external attitude measurements. Another set of LADCP profiles with external attitude data was collected in a region of the Arctic Ocean where the horizontal geomagnetic field is too weak for the ADCP compasses to work reliably. Good agreement between shipboard velocity measurements and Arctic LADCP profiles collected at magnetic dip angles exceeding and processed with external attitude measurements indicate that high-quality velocity profiles can be obtained close to the magnetic poles.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-3 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2007-05) Whelan, Sean P. ; Weller, Robert A. ; Lukas, Roger ; Bradley, Frank ; Lord, Jeffrey ; Smith, Jason C. ; Bahr, Frank B. ; Lethaby, Paul ; Snyder, JefreyThe Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a coordinated part of the HOT program and contribute to the goals of observing heat, fresh water, and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75N 158W by successive mooring turnarounds. These observations will be used to investigate air-sea interaction processes related to climate variability. The first WHOTS mooring (WHOTS-1) was deployed in August 2004. WHOTS-1 was recovered and WHOTS-2 deployed in July 2005. This report documents recovery of the WHOTS-2 mooring and deployment of the third mooring (WHOTS-3) at the same site. Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air-Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite, the surface meteorological variables necessary to compute air-sea fluxes of heat, moisture, and momentum. WHOTS-2 was equipped with one Iridium data transmitter, and WHOTS-3 had two Iridium data transmitters. In cooperation with R. Lukas of the University of Hawaii, the upper 155 m of the morrings were outfitted with oceanographic sensors for the measurement of temperature, conductivity, and velocity. The WHOTS mooring turnaround was done on the Scripps Institution of Oceanography ship Revelle, Cruise AMAT-07, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution and Roger Lukas’group at the University of Hawaii. The cruise took place between 22 and 29 June 2006. Operations on site were initiated with an intercomparison of shipboard meteorological observations with the WHOTS-2 buoy. Dr. Frank Bradley, CSIRO, Australia, assisted with these comparisons. This was followed by recovery of the WHOTS-2 mooring on 24 June. A number of recovered instruments were calibrated by attaching them to the rosette frame of the CTD. Shallow CTD profiles were taken every two hours for 12 hours on the 25th of June. A fish trap was deployed on June 25th by John Yeh, a University of Hawaii graduate student. The WHOTS-3 mooring was deployed on 26 June at approximately 22°46'N, 157°54'W in 4703 m of water. A ship-buoy intercomparison period and series of shallow CTDs followed along with a second deployment of the fishtrap. A NOAA Teacher-At-Sea, Diana Griffiths, and a NOAA Hollings Scholar, Terry Smith, participated in the cruise. This report describes the mooring operations, some of the pre-cruise buoy preparations and CTD casts taken during the cruise, the fish trap deployments, and the experiences of the Teacher-at-Sea and Hollings Scholar.
-
ArticleThe Atlantic Water boundary current in the Chukchi Borderland and Southern Canada Basin(American Geophysical Union, 2020-07-27) Li, Jianqiang ; Pickart, Robert S. ; Lin, Peigen ; Bahr, Frank B. ; Arrigo, Kevin R. ; Juranek, Laurie W. ; Yang, Xiao‐YiSynoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.
-
ArticleWater mass evolution and circulation of the northeastern Chukchi Sea in summer: Implications for nutrient distributions(American Geophysical Union, 2019-06-07) Lin, Peigen ; Pickart, Robert S. ; McRaven, Leah T. ; Arrigo, Kevin R. ; Bahr, Frank ; Lowry, Kate E. ; Stockwell, Dean A. ; Mordy, Calvin W.Synoptic and historical shipboard data, spanning the period 1981–2017, are used to investigate the seasonal evolution of water masses on the northeastern Chukchi shelf and quantify the circulation patterns and their impact on nutrient distributions. We find that Alaskan coastal water extends to Barrow Canyon along the coastal pathway, with peak presence in September, while the Pacific Winter Water (WW) continually drains off the shelf through the summer. The depth‐averaged circulation under light winds is characterized by a strong Alaskan Coastal Current (ACC) and northward flow through Central Channel. A portion of the Central Channel flow recirculates anticyclonically to join the ACC, while the remainder progresses northeastward to Hanna Shoal where it bifurcates around both sides of the shoal. All of the branches converge southeast of the shoal and eventually join the ACC. The wind‐forced response has two regimes: In the coastal region the circulation depends on wind direction, while on the interior shelf the circulation is sensitive to wind stress curl. In the most common wind‐forced state—northeasterly winds and anticyclonic wind stress curl—the ACC reverses, the Central Channel flow penetrates farther north, and there is mass exchange between the interior and coastal regions. In September and October, the region southeast of Hanna Shoal is characterized by elevated amounts of WW, a shallower pycnocline, and higher concentrations of nitrate. Sustained late‐season phytoplankton growth spurred by this pooling of nutrients could result in enhanced vertical export of carbon to the seafloor, contributing to the maintenance of benthic hotspots in this region.
-
ArticleWintertime observations of Subtropical Mode Water formation within the Gulf Stream(American Geophysical Union, 2009-01-28) Joyce, Terrence M. ; Thomas, Leif N. ; Bahr, Frank B.We study the structure of Subtropical Mode Water (STMW) within the eastward-flowing Gulf Stream as it forms during strong winter cooling. Shipboard observations using SeaSoar and ADCP reveal that while active mixing by gravitational instabilities is common, large vertical and lateral shears of the Gulf Stream play a central role in determination of the modes of active mixing. Evidence is presented that low static stability and large vertical shear can combine to cause slantwise convection/symmetric instabilities, while the large anticyclonic shears to the south of the Gulf Stream core can cause low absolute vorticity and precondition the Ertel potential vorticity to be small and more susceptible to instabilities. The area of active mixing driven by surface forcing in the presences of shear occupies a swath 50–90 km wide immediately south of the Gulf Stream core at the northern edge of the Sargasso Sea.
-
Technical ReportAcoustics and oceanographic observations collected during the QPE Experiment by Research Vessels OR1, OR2 and OR3 in the East China Sea in the Summer of 2009(Woods Hole Oceanographic Institution, 2010-08) Newhall, Arthur E. ; Lynch, James F. ; Gawarkiewicz, Glen G. ; Duda, Timothy F. ; McPhee, Neil M. ; Bahr, Frank B. ; Marquette, Craig D. ; Lin, Ying-Tsong ; Jan, Sen ; Wang, Joe ; Chen, Chi-Fang ; Chiu, Linus Y. S. ; Yang, Yiing-Jang ; Wei, Ruey-Chang ; Emerson, Chris ; Morton, David ; Abbot, Ted ; Abbot, Philip A. ; Calder, Brian ; Mayer, Larry A. ; Lermusiaux, Pierre F. J.This document describes data, sensors, and other useful information pertaining to the ONR sponsored QPE field program to quantify, predict and exploit uncertainty in observations and prediction of sound propagation. This experiment was a joint operation between Taiwanese and U.S. researchers to measure and assess uncertainty of predictions of acoustic transmission loss and ambient noise, and to observe the physical oceanography and geology that are necessary to improve their predictability. This work was performed over the continental shelf and slope northeast of Taiwan at two sites: one that was a relatively flat, homogeneous shelf region and a more complex geological site just shoreward of the shelfbreak that was influenced by the proximity of the Kuroshio Current. Environmental moorings and ADCP moorings were deployed and a shipboard SeaSoar vehicle was used to measure environmental spatial structure. In addition, multiple bottom moored receivers and a horizontal hydrophone array were deployed to sample transmission loss from a mobile source and ambient noise. The acoustic sensors, environmental sensors, shipboard resources, and experiment design, and their data, are presented and described in this technical report.
-
Technical ReportOC449-09 Data Report : St. Thomas, USVI to Bermuda, December 1-10, 2008(Woods Hole Oceanographic Institution, 2009-10) Kirincich, Anthony R. ; Hodges, Benjamin A. ; Fratantoni, David M. ; Bahr, Frank B.Data collected during multiple surveys of hydrography, velocity, and biological quantities are presented from a 9-day cruise aboard the R/V Oceanus near the island of St. Thomas, USVI and a subsequent transit to Bermuda during December, 2008. This cruise (OC449-09) was undertaken primarily to field test a newly acquired towed-undulating body, the Scanfish. The Scanfish and a second towed body, the Video Plankton Recorder (VPR), were used to survey hydrographic, optical, and biological properties north and south of St. Thomas. Conductivity-Temperature-Depth (CTD) casts and plankton net-tows were made at locations along the survey transects for inter-comparison. The VPR was also used to profile conditions between St. Thomas and Bermuda during transit. An overview of the cruise is given along with descriptions of the data collection methods, processing steps taken, and data products available for distribution.
-
ArticleWintertime water mass transformation in the western Iceland and Greenland Seas(American Geophysical Union, 2021-07-14) Huang, Jie ; Pickart, Robert S. ; Bahr, Frank B. ; McRaven, Leah T. ; Xu, FanghuaHydrographic and velocity data from a 2018 winter survey of the western Iceland and Greenland Seas are used to investigate the ventilation of overflow water feeding Denmark Strait. We focus on the two general classes of overflow water: warm, saline Atlantic-origin Overflow Water (AtOW) and cold, fresh Arctic-origin Overflow Water (ArOW). The former is found predominantly within the East Greenland Current (EGC), while the latter resides in the interior of the Iceland and Greenland Seas. Progressing north to south, the properties of AtOW in the EGC are modified diapycnally during the winter, in contrast to summer when along-isopycnal mixing dominates. The water column response to a 10-days cold-air outbreak was documented using repeat observations. During the event, the northerly winds pushed the freshwater cap of the EGC onshore, and convection modified the water at the seaward edge of the current. Lateral transfer of heat and salt from the core of AtOW in the EGC appears to have influenced some of this water mass transformation. The long-term evolution of the mixed layers in the interior was investigated using a 1-D mixing model. This suggests that, under strong atmospheric forcing, the densest component of ArOW can be ventilated in this region. Numerous anti-cyclonic eddies spawned from the EGC were observed during the winter survey, revealing that these features can play differing roles in modifying/prohibiting the open-ocean convection.