Bundy
Randelle M.
Bundy
Randelle M.
No Thumbnail Available
Search Results
Now showing
1 - 7 of 7
-
ArticleThe role of external inputs and internal cycling in shaping the global ocean cobalt distribution : insights from the first cobalt biogeochemical model(John Wiley & Sons, 2018-04-16) Tagliabue, Alessandro ; Hawco, Nicholas J. ; Bundy, Randelle M. ; Landing, William M. ; Milne, Angela ; Morton, Peter L. ; Saito, Mak A.Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co‐factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state‐of‐the‐art three‐dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom‐water oxygen conditions. The basin‐scale distribution of cobalt supplied from margins is facilitated by the activity of manganese‐oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.
-
ArticleStructural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect(Frontiers Media, 2016-11-30) Boiteau, Rene M. ; Till, Claire P. ; Ruacho, Angel ; Bundy, Randelle M. ; Hawco, Nicholas J. ; McKenna, Amy M. ; Barbeau, Katherine A. ; Bruland, Kenneth W. ; Saito, Mak A. ; Repeta, Daniel J.Organic ligands form strong complexes with many trace elements in seawater. Various metals can compete for the same ligand chelation sites, and the final speciation of bound metals is determined by relative binding affinities, concentrations of binding sites, uncomplexed metal concentrations, and association/dissociation kinetics. Different ligands have a wide range of metal affinities and specificities. However, the chemical composition of these ligands in the marine environment remains poorly constrained, which has hindered progress in modeling marine metal speciation. In this study, we detected and characterized natural ligands that bind copper (Cu) and nickel (Ni) in the eastern South Pacific Ocean with liquid chromatography tandem inductively coupled plasma mass spectrometry (LC-ICPMS), and high-resolution electrospray ionization mass spectrometry (ESIMS). Dissolved Cu, Ni, and ligand concentrations were highest near the coast. Chromatographically unresolved polar compounds dominated ligands isolated near the coast by solid phase extraction. Offshore, metal and ligand concentrations decreased, but several new ligands appeared. One major ligand was detected that bound both Cu2+ and Ni2+. Based on accurate mass and fragmentation measurements, this compound has a molecular formula of [C20H21N4O8S2+M]+ (M = metal isotope) and contains several azole-like metal binding groups. Additional lipophilic Ni complexes were also present only in oligotrophic waters, with masses of 649, 698, and 712 m/z (corresponding to the 58Ni metal complex). Molecular formulae of [C32H54N3O6S2Ni]+ and [C33H56N3O6S2Ni]+ were determined for two of these compounds. Addition of Cu and Ni to the samples also revealed the presence of additional compounds that can bind both Ni and Cu. Although these specific compounds represent a small fraction of the total dissolved Cu and Ni pool, they highlight the compositional diversity and spatial heterogeneity of marine Ni and Cu ligands, as well as variability in the extent to which different metals in the same environment compete for ligand binding.
-
PreprintThe composition of dissolved iron in the dusty surface ocean : an exploration using size-fractionated iron-binding ligands( 2014-09) Fitzsimmons, Jessica N. ; Bundy, Randelle M. ; Al-Subiai, Sherain N. ; Barbeau, Katherine A. ; Boyle, Edward A.The size partitioning of dissolved iron and organic iron-binding ligands into soluble and colloidal phases was investigated in the upper 150 m of two stations along the GA03 U.S. GEOTRACES North Atlantic transect. The size fractionation was completed using cross-flow filtration methods, followed by analysis by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) for iron and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) for iron-binding ligands. On average, 80% of the 0.1-0.65 nM dissolved iron (<0.2 μm) was partitioned into the colloidal iron (cFe) size fraction (10 kDa < cFe < 0.2 μm), as expected for areas of the ocean underlying a dust plume. The 1.3-2.0 nM strong organic iron-binding ligands, however, overwhelmingly (75-77%) fell into the soluble size fraction (<10 kDa). As a result, modeling the dissolved iron size fractionation at equilibrium using the observed ligand partitioning did not accurately predict the iron partitioning into colloidal and soluble pools. This suggests that either a portion of colloidal ligands are missed by current electrochemical methods because they react with iron more slowly than the equilibration time of our CLE-ACSV method, or part of the observed colloidal iron is actually inorganic in composition and thus cannot be predicted by our model of unbound iron-binding ligands. This potentially contradicts the prevailing view that greater than 99% of dissolved iron in the ocean is organically complexed. Untangling the chemical form of iron in the upper ocean has important implications for surface ocean biogeochemistry and may affect iron uptake by phytoplankton.
-
ArticleElevated sources of cobalt in the Arctic Ocean(European Geosciences Union, 2020-10-01) Bundy, Randelle M. ; Tagliabue, Alessandro ; Hawco, Nicholas J. ; Morton, Peter L. ; Twining, Benjamin S. ; Hatta, Mariko ; Noble, Abigail E. ; Cape, Mattias R. ; John, Seth G. ; Cullen, Jay T. ; Saito, Mak A.Cobalt (Co) is an important bioactive trace metal that is the metal cofactor in cobalamin (vitamin B12) which can limit or co-limit phytoplankton growth in many regions of the ocean. Total dissolved and labile Co measurements in the Canadian sector of the Arctic Ocean during the U.S. GEOTRACES Arctic expedition (GN01) and the Canadian International Polar Year GEOTRACES expedition (GIPY14) revealed a dynamic biogeochemical cycle for Co in this basin. The major sources of Co in the Arctic were from shelf regions and rivers, with only minimal contributions from other freshwater sources (sea ice, snow) and eolian deposition. The most striking feature was the extremely high concentrations of dissolved Co in the upper 100 m, with concentrations routinely exceeding 800 pmol L−1 over the shelf regions. This plume of high Co persisted throughout the Arctic basin and extended to the North Pole, where sources of Co shifted from primarily shelf-derived to riverine, as freshwater from Arctic rivers was entrained in the Transpolar Drift. Dissolved Co was also strongly organically complexed in the Arctic, ranging from 70 % to 100 % complexed in the surface and deep ocean, respectively. Deep-water concentrations of dissolved Co were remarkably consistent throughout the basin (∼55 pmol L−1), with concentrations reflecting those of deep Atlantic water and deep-ocean scavenging of dissolved Co. A biogeochemical model of Co cycling was used to support the hypothesis that the majority of the high surface Co in the Arctic was emanating from the shelf. The model showed that the high concentrations of Co observed were due to the large shelf area of the Arctic, as well as to dampened scavenging of Co by manganese-oxidizing (Mn-oxidizing) bacteria due to the lower temperatures. The majority of this scavenging appears to have occurred in the upper 200 m, with minimal additional scavenging below this depth. Evidence suggests that both dissolved Co (dCo) and labile Co (LCo) are increasing over time on the Arctic shelf, and these limited temporal results are consistent with other tracers in the Arctic. These elevated surface concentrations of Co likely lead to a net flux of Co out of the Arctic, with implications for downstream biological uptake of Co in the North Atlantic and elevated Co in North Atlantic Deep Water. Understanding the current distributions of Co in the Arctic will be important for constraining changes to Co inputs resulting from regional intensification of freshwater fluxes from ice and permafrost melt in response to ongoing climate change.
-
ArticleIron-binding ligands in the Southern California Current System : mechanistic studies(Frontiers Media, 2016-03-15) Bundy, Randelle M. ; Jiang, Mingshun ; Carter, Melissa ; Barbeau, Katherine A.The distributions of dissolved iron and organic iron-binding ligands were examined in water column profiles and deckboard incubation experiments in the southern California Current System (sCCS) along a transition from coastal to semi-oligotrophic waters. Analysis of the iron-binding ligand pool by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) using multiple analytical windows (MAWs) revealed three classes of iron-binding ligands present throughout the water column (L1−L3), whose distributions closely matched those of dissolved iron and nitrate. Despite significant biogeochemical gradients, ligand profiles were similar between stations, with surface minima in strong ligands (L1 and L2), and relatively constant concentrations of weaker ligands (L3) down to 500 m. A phytoplankton grow-out incubation, initiated from an iron-limited water mass, showed dynamic temporal cycling of iron-binding ligands. A biological iron model was able to capture the patterns of the strong ligands in the grow-out incubation relatively well with only the microbial community as a biological source. An experiment focused on remineralization of particulate organic matter showed production of both strong and weak iron-binding ligands by the heterotrophic community, supporting a mechanism for in-situ production of both strong and weak iron-binding ligands in the subsurface water column. Photochemical experiments showed a variable influence of sunlight on the degradation of natural iron-binding ligands, providing some evidence to explain differences in surface ligand concentrations between stations. Patterns in ligand distributions between profiles and in the incubation experiments were primarily related to macronutrient concentrations, suggesting microbial remineralization processes might dominate on longer time-scales over short-term changes associated with photochemistry or phytoplankton growth.
-
ArticleDistinct siderophores contribute to iron cycling in the mesopelagic at Station ALOHA(Frontiers Media, 2018-03-01) Bundy, Randelle M. ; Boiteau, Rene M. ; McLean, Craig ; Turk-Kubo, Kendra A. ; McIlvin, Matthew R. ; Saito, Mak A. ; Van Mooy, Benjamin A. S. ; Repeta, Daniel J.The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol L−1 in the surface to 1.6 nmol L−1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxamine siderophores were most abundant in the upper water column, with concentrations between 0.1 and 2 pmol L−1, while a suite of amphibactins were found below 200 m with concentrations between 0.8 and 11 pmol L−1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log KcondFeL1,Fe′) ranging from 12.0 to 12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0 to 14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic.
-
ArticleThe transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean(American Geophysical Union, 2020-04-08) Charette, Matthew A. ; Kipp, Lauren ; Jensen, Laramie T. ; Dabrowski, Jessica S. ; Whitmore, Laura M. ; Fitzsimmons, Jessica N. ; Williford, Tatiana ; Ulfsbo, Adam ; Jones, Elizabeth M. ; Bundy, Randelle M. ; Vivancos, Sebastian M. ; Pahnke, Katharina ; John, Seth G. ; Xiang, Yang ; Hatta, Mariko ; Petrova, Mariia V. ; Heimbürger, Lars-Eric ; Bauch, Dorothea ; Newton, Robert ; Pasqualini, Angelica ; Agather, Alison ; Amon, Rainer M. W. ; Anderson, Robert F. ; Andersson, Per S. ; Benner, Ronald ; Bowman, Katlin ; Edwards, R. Lawrence ; Gdaniec, Sandra ; Gerringa, Loes J. A. ; González, Aridane G. ; Granskog, Mats A. ; Haley, Brian ; Hammerschmidt, Chad R. ; Hansell, Dennis A. ; Henderson, Paul B. ; Kadko, David C. ; Kaiser, Karl ; Laan, Patrick ; Lam, Phoebe J. ; Lamborg, Carl H. ; Levier, Martin ; Li, Xianglei ; Margolin, Andrew R. ; Measures, Christopher I. ; Middag, Rob ; Millero, Frank J. ; Moore, Willard S. ; Paffrath, Ronja ; Planquette, Helene ; Rabe, Benjamin ; Reader, Heather ; Rember, Robert ; Rijkenberg, Micha J. A. ; Roy-Barman, Matthieu ; van der Loeff, Michiel Rutgers ; Saito, Mak A. ; Schauer, Ursula ; Schlosser, Peter ; Sherrell, Robert M. ; Shiller, Alan M. ; Slagter, Hans ; Sonke, Jeroen E. ; Stedmon, Colin ; Woosley, Ryan J. ; Valk, Ole ; van Ooijen, Jan ; Zhang, RuifengA major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.