Kelley Daniel E.

No Thumbnail Available
Last Name
Kelley
First Name
Daniel E.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes
    ( 2013-10-20) Bourgault, Daniel ; Morsilli, M. ; Richards, Clark G. ; Neumeier, U. ; Kelley, Daniel E.
    Two-dimensional, nonlinear and nonhydrostatic field-scale numerical simulations are used to examine the resuspension, dispersal and transport of mud-like sediment caused by the shoaling and breaking of long internal solitary waves on uniform slopes. The patterns of erosion and transport are both examined, in a series of test cases with varying conditions. Shoreward sediment movement is mainly within boluses, while seaward movement is within intermediate nepheloid layers. Several relationships between properties of the suspended sediment and control parameters are determined such as the horizontal extent of the nehpeloid layers, the total mass of resuspended sediment and the point of maximum bed erosion. The numerical results provide a plausible explanation for acoustic backscatter patterns observed during and after the shoaling of internal solitary wavetrains in a natural coastal environment. The results may further help interpret sedimentary structures that may have been shaped by internal waves and add an another e ective mechanism for o shore dispersal of muddy sediments.
  • Article
    Toward quantifying the increasing role oceanic heat in sea ice loss in the new Arctic
    (American Meteorological Society, 2015-12) Carmack, Eddy C. ; Polyakov, Igor V. ; Padman, Laurie ; Fer, Ilker ; Hunke, Elizabeth C. ; Hutchings, Jennifer K. ; Jackson, Jennifer M. ; Kelley, Daniel E. ; Kwok, Ron ; Layton, Chantelle ; Melling, Humfrey ; Perovich, Donald K. ; Persson, Ola ; Ruddick, Barry R. ; Timmermans, Mary-Louise ; Toole, John M. ; Ross, Tetjana ; Vavrus, Steve ; Winsor, Peter
    The loss of Arctic sea ice has emerged as a leading signal of global warming. This, together with acknowledged impacts on other components of the Earth system, has led to the term “the new Arctic.” Global coupled climate models predict that ice loss will continue through the twenty-first century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions between the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. This paper summarizes our present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific Water, river discharge, and summer sensible heat and shortwave radiative fluxes at the ocean/ice surface—and speculates on how such processes may change in the new Arctic. The complexity of the coupled Arctic system, and the logistic and technological challenges of working in the Arctic Ocean, require a coordinated interdisciplinary and international program that will not only improve understanding of this critical component of global climate but will also provide opportunities to develop human resources with the skills required to tackle related problems in complex climate systems. We propose a research strategy with components that include 1) improved mapping of the upper- and middepth Arctic Ocean, 2) enhanced quantification of important process, 3) expanded long-term monitoring at key heat-flux locations, and 4) development of numerical capabilities that focus on parameterization of heat-flux mechanisms and their interactions.
  • Article
    Measurements of shoaling internal waves and turbulence in an estuary
    (John Wiley & Sons, 2013-01-30) Richards, Clark G. ; Bourgault, Daniel ; Galbraith, Peter S. ; Hay, Alex ; Kelley, Daniel E.
    The shoaling of horizontally propagating internal waves may represent an important source of mixing and transport in estuaries and coastal seas. Including such effects in numerical models demands improvements in the understanding of several aspects of the energetics, especially those relating to turbulence generation, and observations are needed to build this understanding. To address some of these issues in the estuarine context, we undertook an intensive field program for 10 days in the summer of 2008 in the St. Lawrence Estuary. The sampling involved shore-based photogrammetry, ship-based surveys, and an array of moorings in the shoaling region that held both conventional and turbulence-resolving sensors. The measurements shed light on many aspects of the wave shoaling process. Wave arrivals were generally phase-locked with the M2 tide, providing hints about far-field forcing. In the deeper part of the study domain, the waves propagated according to the predictions of linear theory. In intermediate-depth waters, the waves traversed the field site perpendicularly to isobaths, a pattern that continued as the waves transformed nonlinearly. Acoustic Doppler velocimeters permitted inference of the turbulent energetics, and two main features were studied. First, during a period of shoaling internal waves, turbulence dissipation rates exceeded values associated with tidal shear by an order of magnitude. Second, the evolving spectral signatures associated with a particular wave-shoaling event suggest that the turbulence is at least partly locally generated. Overall, the results of this study suggest that parameterizations of wave-induced mixing could employ relatively simple dynamics in deep water, but may have to handle a wide suite of turbulence generation and transport mechanisms in inshore regions.