Lima Ivan D.

No Thumbnail Available
Last Name
Lima
First Name
Ivan D.
ORCID
0000-0001-5345-0652

Search Results

Now showing 1 - 20 of 42
  • Article
    Comparing food web structures and dynamics across a suite of global marine ecosystem models
    (Elsevier, 2013-05-16) Sailley, Sevrine F. ; Vogt, Meike ; Doney, Scott C. ; Aita, M. N. ; Bopp, Laurent ; Buitenhuis, Erik T. ; Hashioka, Taketo ; Lima, Ivan D. ; Le Quere, Corinne ; Yamanaka, Yasuhiro
    Dynamic Green Ocean Models (DGOMs) include different sets of Plankton Functional Types (PFTs) and equations, thus different interactions and food webs. Using four DGOMs (CCSM-BEC, PISCES, NEMURO and PlankTOM5) we explore how predator–prey interactions influence food web dynamics. Using each model's equations and biomass output, interaction strengths (direct and specific) were calculated and the role of zooplankton in modeled food webs examined. In CCSM-BEC the single size-class adaptive zooplankton preys on different phytoplankton groups according to prey availability and food preferences, resulting in a strong top-down control. In PISCES the micro- and meso-zooplankton groups compete for food resources, grazing phytoplankton depending on their availability in a mixture of bottom-up and top-down control. In NEMURO macrozooplankton controls the biomass of other zooplankton PFTs and defines the structure of the food web with a strong top-down control within the zooplankton. In PlankTOM5, competition and predation between micro- and meso-zooplankton along with strong preferences for nanophytoplankton and diatoms, respectively, leads to their mutual exclusion with a mixture of bottom-up and top-down control of the plankton community composition. In each model, the grazing pressure of the zooplankton PFTs and the way it is exerted on their preys may result in the food web dynamics and structure of the model to diverge from the one that was intended when designing the model. Our approach shows that the food web dynamics, in particular the strength of the predator–prey interactions, are driven by the choice of parameters and more specifically the food preferences. Consequently, our findings stress the importance of equation and parameter choice as they define interactions between PFTs and overall food web dynamics (competition, bottom-up or top-down effects). Also, the differences in the simulated food-webs between different models highlight the gap of knowledge for zooplankton rates and predator–prey interactions. In particular, concerted effort is needed to identify the key growth and loss parameters and interactions and quantify them with targeted laboratory experiments in order to bring our understanding of zooplankton at a similar level to phytoplankton.
  • Article
    Reply to a comment by Stephen M. Chiswell on: “Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom” by M. J. Behrenfeld et al. (2013)
    (John Wiley & Sons, 2013-12-12) Behrenfeld, Michael J. ; Doney, Scott C. ; Lima, Ivan D. ; Boss, Emmanuel S. ; Siegel, David A.
  • Preprint
    Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data
    ( 2008-03-04) Doney, Scott C. ; Lima, Ivan D. ; Moore, J. Keith ; Lindsay, Keith ; Behrenfeld, Michael J. ; Westberry, Toby K. ; Mahowald, Natalie M. ; Glover, David M. ; Takahashi, Taro
    We present a generalized framework for assessing the skill of global upper ocean ecosystem-biogeochemical models against in-situ field data and satellite observations. We illustrate the approach utilizing a multi-decade (1979-2004) hindcast experiment conducted with the Community Climate System Model (CCSM-3) ocean carbon model. The CCSM-3 ocean carbon model incorporates a multi-nutrient, multi-phytoplankton functional group ecosystem module coupled with a carbon, oxygen, nitrogen, phosphorus, silicon, and iron biogeochemistry module embedded in a global, threedimensional ocean general circulation model. The model is forced with physical climate forcing from atmospheric reanalysis and satellite data products and time-varying atmospheric dust deposition. Data-based skill metrics are used to evaluate the simulated time-mean spatial patterns, seasonal cycle amplitude and phase, and subannual to interannual variability. Evaluation data include: sea surface temperature and mixed layer depth; satellite derived surface ocean chlorophyll, primary productivity, phytoplankton growth rate and carbon biomass; large-scale climatologies of surface nutrients, pCO2, and air-sea CO2 and O2 flux; and time-series data from the Joint Global Ocean Flux Study (JGOFS). Where the data is sufficient, we construct quantitative skill metrics using: model-data residuals, time-space correlation, root mean square error, and Taylor diagrams.
  • Article
    Satellite-detected fluorescence reveals global physiology of ocean phytoplankton
    (Copernicus Publications on behalf of the European Geosciences Union, 2009-05-08) Behrenfeld, Michael J. ; Westberry, Toby K. ; Boss, Emmanuel S. ; O'Malley, Robert T. ; Siegel, David A. ; Wiggert, Jerry D. ; Franz, Bryan A. ; McClain, Charles R. ; Feldman, G. C. ; Doney, Scott C. ; Moore, J. Keith ; Dall'Olmo, Giorgio ; Milligan, A. J. ; Lima, Ivan D. ; Mahowald, Natalie M.
    Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.
  • Article
    Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades
    (American Geophysical Union, 2008-12-31) Thomas, Helmuth ; Prowe, A. E. Friederike ; Lima, Ivan D. ; Doney, Scott C. ; Wanninkhof, Rik ; Greatbatch, Richard J. ; Schuster, Ute ; Corbiere, Antoine
    Observational studies report a rapid decline of ocean CO2 uptake in the temperate North Atlantic during the last decade. We analyze these findings using ocean physical-biological numerical simulations forced with interannually varying atmospheric conditions for the period 1979–2004. In the simulations, surface ocean water mass properties and CO2 system variables exhibit substantial multiannual variability on sub-basin scales in response to wind-driven reorganization in ocean circulation and surface warming/cooling. The simulated temporal evolution of the ocean CO2 system is broadly consistent with reported observational trends and is influenced substantially by the phase of the North Atlantic Oscillation (NAO). Many of the observational estimates cover a period after 1995 of mostly negative or weakly positive NAO conditions, which are characterized in the simulations by reduced North Atlantic Current transport of subtropical waters into the eastern basin and by a decline in CO2 uptake. We suggest therefore that air-sea CO2 uptake may rebound in the eastern temperate North Atlantic during future periods of more positive NAO, similar to the patterns found in our model for the sustained positive NAO period in the early 1990s. Thus, our analysis indicates that the recent rapid shifts in CO2 flux reflect decadal perturbations superimposed on more gradual secular trends. The simulations highlight the need for long-term ocean carbon observations and modeling to fully resolve multiannual variability, which can obscure detection of the long-term changes associated with anthropogenic CO2 uptake and climate change.
  • Article
    The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO2 by North Atlantic Ocean mode waters
    (American Geophysical Union, 2011-09-21) Levine, Naomi M. ; Doney, Scott C. ; Lima, Ivan D. ; Wanninkhof, Rik ; Bates, Nicholas R. ; Feely, Richard A.
    The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
  • Article
    Impact of variable air-sea O2 and CO2 fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning
    (Copernicus Publications on behalf of the European Geosciences Union, 2008-06-02) Nevison, Cynthia D. ; Mahowald, Natalie M. ; Doney, Scott C. ; Lima, Ivan D. ; Cassar, Nicolas
    A three dimensional, time-evolving field of atmospheric potential oxygen (APO ~O2/N2+CO2) was estimated using surface O2, N2 and CO2 fluxes from the WHOI ocean ecosystem model to force the MATCH atmospheric transport model. Land and fossil carbon fluxes were also run in MATCH and translated into O2 tracers using assumed O2:CO2 stoichiometries. The modeled seasonal cycles in APO agree well with the observed cycles at 13 global monitoring stations, with agreement helped by including oceanic CO2 in the APO calculation. The modeled latitudinal gradient in APO is strongly influenced by seasonal rectifier effects in atmospheric transport. An analysis of the APO-vs.-CO2 mass-balance method for partitioning land and ocean carbon sinks was performed in the controlled context of the MATCH simulation, in which the true surface carbon and oxygen fluxes were known exactly. This analysis suggests uncertainty of up to ±0.2 PgC in the inferred sinks due to variability associated with sparse atmospheric sampling. It also shows that interannual variability in oceanic O2 fluxes can cause large errors in the sink partitioning when the method is applied over short timescales. However, when decadal or longer averages are used, the variability in the oceanic O2 flux is relatively small, allowing carbon sinks to be partitioned to within a standard deviation of 0.1 Pg C/yr of the true values, provided one has an accurate estimate of long-term mean O2 outgassing.
  • Article
    North Pacific carbon cycle response to climate variability on seasonal to decadal timescales
    (American Geophysical Union, 2006-07-04) McKinley, Galen A. ; Takahashi, Taro ; Buitenhuis, Erik T. ; Chai, Fei ; Christian, James R. ; Doney, Scott C. ; Jiang, Mingshun ; Lindsay, Keith ; Moore, J. Keith ; Le Quere, Corinne ; Lima, Ivan D. ; Murtugudde, Raghu ; Shi, L. ; Wetzel, Patrick
    Climate variability drives significant changes in the physical state of the North Pacific, and thus there may be important impacts of climate variability on the upper ocean carbon balance across the basin. We address this issue by considering the response of seven biogeochemical ocean models to climate variability in the North Pacific. The models’ upper ocean pCO2 and air-sea CO2 flux respond similarly to climate variability on seasonal to decadal timescales. Modeled seasonal cycles of pCO2 and its temperature and non-temperature driven components at three contrasting oceanographic sites capture the basic features found in observations [Takahashi et al., 2002, 2006; Keeling et al., 2004; Brix et al., 2004]. However, particularly in the Western Subarctic Gyre, the models have difficulty representing the temporal structure of the total pCO2 cycle because it results from the difference of these two large and opposing components. In all but one model, the airsea CO2 flux interannual variability (1σ) in the North Pacific is smaller (ranges across models from 0.03 to 0.11 PgC/yr) than in the Tropical Pacific (ranges across models from 0.08 to 0.19 PgC/yr), and the timeseries of the first or second EOF of the air-sea CO2 flux has a significant correlation with the Pacific Decadal Oscillation (PDO). Though air-sea CO2 flux anomalies are correlated with the PDO, their magnitudes are small (up to ±0.025 PgC/yr (1σ)). Flux anomalies are damped because anomalies in the key drivers of pCO2 (temperature, dissolved inorganic carbon (DIC) and alkalinity) are all of similar magnitude and have strongly opposing effects that damp total pCO2 anomalies.
  • Article
    Decadal trends in the ocean carbon sink
    (National Academy of Sciences, 2019-05-28) DeVries, Timothy ; Le Quere, Corinne ; Andrews, Oliver D. ; Berthet, Sarah ; Hauck, Judith ; Ilyina, Tatiana ; Landschützer, Peter ; Lenton, Andrew ; Lima, Ivan D. ; Nowicki, Michael ; Schwinger, Jorg ; Séférian, Roland
    Measurements show large decadal variability in the rate of CO2 accumulation in the atmosphere that is not driven by CO2 emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of CO2 due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic CO2 uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric CO2 accumulation. Data-based estimates of the ocean carbon sink from pCO2 mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean CO2 sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean CO2 uptake, but also demonstrate that the sensitivity of ocean CO2 uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial CO2 sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial CO2 uptake to climate variability and lead to improved climate projections and decadal climate predictions.
  • Article
    Air-sea CO2 flux in the Pacific Ocean for the period 1990–2009
    (Copernicus Publications on behalf of the European Geosciences Union, 2014-02-06) Ishii, Masao ; Feely, Richard A. ; Rodgers, Keith B. ; Park, Geun-Ha ; Wanninkhof, Rik ; Sasano, D. ; Sugimoto, H. ; Cosca, Catherine E. ; Nakaoka, Shin-ichiro ; Telszewski, Maciej ; Nojiri, Yukihiro ; Mikaloff Fletcher, Sara E. ; Niwa, Y. ; Patra, Prabir K. ; Valsala, V. ; Nakano, Hideyuki ; Lima, Ivan D. ; Doney, Scott C. ; Buitenhuis, Erik T. ; Aumont, Olivier ; Dunne, John P. ; Lenton, Andrew ; Takahashi, Taro
    Air–sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air–sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extratropics (18–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extratropics (44.5–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean-interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, interannual variations and mean seasonal variations of the regionally integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean-interior CO2 inversions are −0.47 ± 0.13 Pg C yr−1 in the North Pacific extratropics, +0.44 ± 0.14 Pg C yr−1 in the tropical Pacific, and −0.37 ± 0.08 Pg C yr−1 in the South Pacific extratropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extratropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., −0.49 ± 0.02 Pg C yr−1 in the North Pacific extratropics, +0.41 ± 0.05 Pg C yr−1 in the tropical Pacific, and −0.39 ± 0.11 Pg C yr−1 in the South Pacific extratropics. The estimates from the atmospheric CO2 inversions show large variations amongst different inversion systems, but their median fluxes are consistent with the estimates from climatological pCO2sw data and pCO2sw diagnostics. In the South Pacific extratropics, where CO2 variations in the surface and ocean interior are severely undersampled, the difference in the air–sea CO2 flux estimates between the diagnostic models and ocean-interior CO2 inversions is larger (0.18 Pg C yr−1). The range of estimates from forward OBGCMs is also large (−0.19 to −0.72 Pg C yr−1). Regarding interannual variability of air–sea CO2 fluxes, positive and negative anomalies are evident in the tropical Pacific during the cold and warm events of the El Niño–Southern Oscillation in the estimates from pCO2sw diagnostic models and from OBGCMs. They are consistent in phase with the Southern Oscillation Index, but the peak-to-peak amplitudes tend to be higher in OBGCMs (0.40 ± 0.09 Pg C yr−1) than in the diagnostic models (0.27 ± 0.07 Pg C yr−1).
  • Article
    Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity
    (Copernicus Publications on behalf of the European Geosciences Union, 2010-02-15) Henson, Stephanie A. ; Sarmiento, Jorge L. ; Dunne, John P. ; Bopp, Laurent ; Lima, Ivan D. ; Doney, Scott C. ; John, Jasmin G. ; Beaulieu, C.
    Global climate change is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR). We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of ~40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter (~20–30 years). Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until ~2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decades-long data record must be established if the impact of climate change on ocean productivity is to be definitively detected.
  • Article
    Data-based assessment of environmental controls on global marine nitrogen fixation
    (Copernicus Publications on behalf of the European Geosciences Union, 2014-02-06) Luo, Ya-Wei ; Lima, Ivan D. ; Karl, David M. ; Deutsch, Curtis A. ; Doney, Scott C.
    There are a number of hypotheses concerning the environmental controls on marine nitrogen fixation (NF). Most of these hypotheses have not been assessed against direct measurements on the global scale. In this study, we use ~ 500 depth-integrated field measurements of NF covering the Pacific and Atlantic oceans to test whether the spatial variance of these measurements can be explained by the commonly hypothesized environmental controls, including measurement-based surface solar radiation, mixed layer depth, average solar radiation in the mixed layer, sea surface temperature, wind speed, surface nitrate and phosphate concentrations, surface excess phosphate (P*) concentration and subsurface minimum dissolved oxygen (in upper 500 m), as well as model-based P* convergence and atmospheric dust deposition. By conducting simple linear regression and stepwise multiple linear regression (MLR) analyses, surface solar radiation (or sea surface temperature) and subsurface minimum dissolved oxygen are identified as the predictors that explain the most spatial variance in the observed NF data, although it is unclear why the observed NF decreases when the level of subsurface minimum dissolved oxygen is higher than ~ 150 μM. Dust deposition and wind speed do not appear to influence the spatial patterns of NF on global scale. The weak correlation between the observed NF and the P* convergence and concentrations suggests that the available data currently remain insufficient to fully support the hypothesis that spatial variability in denitrification is the principal control on spatial variability in marine NF. By applying the MLR-derived equation, we estimate the global-integrated NF at 74 (error range 51–110) Tg N yr−1 in the open ocean, acknowledging that it could be substantially higher as the 15N2-assimilation method used by most of the field samples underestimates NF. More field NF samples in the Pacific and Indian oceans, particularly in the oxygen minimum zones, are needed to reduce uncertainties in our conclusion.
  • Article
    Phytoplankton competition during the spring bloom in four plankton functional type models
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-11-02) Hashioka, Taketo ; Vogt, Meike ; Yamanaka, Yasuhiro ; Le Quere, Corinne ; Buitenhuis, Erik T. ; Aita, M. N. ; Alvain, S. ; Bopp, Laurent ; Hirata, T. ; Lima, Ivan D. ; Sailley, Sevrine F. ; Doney, Scott C.
    We investigated the mechanisms of phytoplankton competition during the spring bloom, one of the most dramatic seasonal events in lower-trophic-level ecosystems, in four state-of-the-art plankton functional type (PFT) models: PISCES, NEMURO, PlankTOM5 and CCSM-BEC. In particular, we investigated the relative importance of different ecophysiological processes on the determination of the community structure, focusing both on the bottom-up and the top-down controls. The models reasonably reproduced the observed global distribution and seasonal variation of phytoplankton biomass. The fraction of diatoms with respect to the total phytoplankton biomass increases with the magnitude of the spring bloom in all models. However, the governing mechanisms differ between models, despite the fact that current PFT models represent ecophysiological processes using the same types of parameterizations. The increasing trend in the percentage of diatoms with increasing bloom magnitude is mainly caused by a stronger nutrient dependence of diatom growth compared to nanophytoplankton (bottom-up control). The difference in the maximum growth rate plays an important role in NEMURO and PlankTOM5 and determines the absolute values of the percentage of diatoms during the bloom. In CCSM-BEC, the light dependency of growth plays an important role in the North Atlantic and the Southern Ocean. The grazing pressure by zooplankton (top-down control), however, strongly contributes to the dominance of diatoms in PISCES and CCSM-BEC. The regional differences in the percentage of diatoms in PlankTOM5 are mainly determined by top-down control. These differences in the mechanisms suggest that the response of marine ecosystems to climate change could significantly differ among models, even if the present-day ecosystem is reproduced to a similar degree of confidence. For further understanding of plankton competition and for the prediction of future change in marine ecosystems, it is important to understand the relative differences in each physiological rate and life history rate in the bottom-up and the top-down controls between PFTs.
  • Article
    Global oceanic emission of ammonia : constraints from seawater and atmospheric observations
    (John Wiley & Sons, 2015-08-13) Paulot, Fabien ; Jacob, Daniel J. ; Johnson, Martin T. ; Bell, Tom G. ; Baker, Alexander R. ; Keene, William C. ; Lima, Ivan D. ; Doney, Scott C. ; Stock, Charles A.
    Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.
  • Article
    Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing
    (Frontiers Media, 2021-04-06) Eveleth, Rachel ; Glover, David M. ; Long, Matthew C. ; Lima, Ivan D. ; Chase, Alison P. ; Doney, Scott C.
    High-resolution ocean biophysical models are now routinely being conducted at basin and global-scale, opening opportunities to deepen our understanding of the mechanistic coupling of physical and biological processes at the mesoscale. Prior to using these models to test scientific questions, we need to assess their skill. While progress has been made in validating the mean field, little work has been done to evaluate skill of the simulated mesoscale variability. Here we use geostatistical 2-D variograms to quantify the magnitude and spatial scale of chlorophyll a patchiness in a 1/10th-degree eddy-resolving coupled Community Earth System Model simulation. We compare results from satellite remote sensing and ship underway observations in the North Atlantic Ocean, where there is a large seasonal phytoplankton bloom. The coefficients of variation, i.e., the arithmetic standard deviation divided by the mean, from the two observational data sets are approximately invariant across a large range of mean chlorophyll a values from oligotrophic and winter to subpolar bloom conditions. This relationship between the chlorophyll a mesoscale variability and the mean field appears to reflect an emergent property of marine biophysics, and the high-resolution simulation does poorly in capturing this skill metric, with the model underestimating observed variability under low chlorophyll a conditions such as in the subtropics.
  • Article
    Challenges of modeling depth-integrated marine primary productivity over multiple decades : a case study at BATS and HOT
    (American Geophysical Union, 2010-09-15) Saba, Vincent S. ; Friedrichs, Marjorie A. M. ; Carr, Mary-Elena ; Antoine, David ; Armstrong, Robert A. ; Asanuma, Ichio ; Aumont, Olivier ; Bates, Nicholas R. ; Behrenfeld, Michael J. ; Bennington, Val ; Bopp, Laurent ; Bruggeman, Jorn ; Buitenhuis, Erik T. ; Church, Matthew J. ; Ciotti, Aurea M. ; Doney, Scott C. ; Dowell, Mark ; Dunne, John P. ; Dutkiewicz, Stephanie ; Gregg, Watson ; Hoepffner, Nicolas ; Hyde, Kimberly J. W. ; Ishizaka, Joji ; Kameda, Takahiko ; Karl, David M. ; Lima, Ivan D. ; Lomas, Michael W. ; Marra, John F. ; McKinley, Galen A. ; Melin, Frederic ; Moore, J. Keith ; Morel, Andre ; O'Reilly, John ; Salihoglu, Baris ; Scardi, Michele ; Smyth, Tim J. ; Tang, Shilin ; Tjiputra, Jerry ; Uitz, Julia ; Vichi, Marcello ; Waters, Kirk ; Westberry, Toby K. ; Yool, Andrew
    The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ 14C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-a was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-a time series were available.
  • Preprint
    Impact of eddy–wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean
    ( 2010-12) Anderson, Laurence A. ; McGillicuddy, Dennis J. ; Maltrud, Mathew E. ; Lima, Ivan D. ; Doney, Scott C.
    Two eddy-resolving (0.1-degree) physical-biological simulations of the North Atlantic Ocean are compared, one with the surface momentum flux computed only from wind velocities and the other using the difference between air and ocean velocity vectors. This difference in forcing has a significant impact on the intensities and relative number of different types of mesoscale eddies in the Sargasso Sea. Eddy/wind interaction significantly reduces eddy intensities and increases the number of mode-water eddies and “thinnies” relative to regular cyclones and anticyclones; it also modifies upward isopycnal displacements at the base of the euphotic zone, increasing them in the centers of mode water eddies and at the edges of cyclones, and decreasing them in the centers of cyclones. These physical changes increase phytoplankton growth rates and biomass in mode-water eddies, bringing the biological simulation into better agreement with field data. These results indicate the importance of including the eddy/wind interaction in simulations of the physics and biology of eddies in the subtropical North Atlantic. However, eddy intensities in the simulation with eddy/wind interaction are lower than observed, which suggests a decrease in horizontal viscosity or an increase in horizontal grid resolution will be necessary to regain the observed level of eddy activity.
  • Article
    Response of ocean phytoplankton community structure to climate change over the 21st century : partitioning the effects of nutrients, temperature and light
    (Copernicus Publications on behalf of the European Geosciences Union, 2010-12-02) Marinov, Irina ; Doney, Scott C. ; Lima, Ivan D.
    The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.
  • Article
    Global carbon budget 2017
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-03-12) Le Quere, Corinne ; Andrew, Robbie M. ; Friedlingstein, Pierre ; Sitch, Stephen ; Pongratz, Julia ; Manning, Andrew C. ; Korsbakken, Jan Ivar ; Peters, Glen P. ; Canadell, Josep G. ; Jackson, Robert B. ; Boden, Thomas A. ; Tans, Pieter P. ; Andrews, Oliver D. ; Arora, Vivek K. ; Bakker, Dorothee ; Barbero, Leticia ; Becker, Meike ; Betts, Richard A. ; Bopp, Laurent ; Chevallier, Frédéric ; Chini, Louise Parsons ; Ciais, Philippe ; Cosca, Catherine E. ; Cross, Jessica N. ; Currie, Kim I. ; Gasser, Thomas ; Harris, Ian ; Hauck, Judith ; Haverd, Vanessa ; Houghton, Richard A. ; Hunt, Christopher W. ; Hurtt, George ; Ilyina, Tatiana ; Jain, Atul K. ; Kato, Etsushi ; Kautz, Markus ; Keeling, Ralph F. ; Klein Goldewijk, Kees ; Körtzinger, Arne ; Landschützer, Peter ; Lefèvre, Nathalie ; Lenton, Andrew ; Lienert, Sebastian ; Lima, Ivan D. ; Lombardozzi, Danica ; Metzl, Nicolas ; Millero, Frank J. ; Monteiro, Pedro M. S. ; Munro, David R. ; Nabel, Julia E. M. S. ; Nakaoka, Shin-ichiro ; Nojiri, Yukihiro ; Padin, X. Antonio ; Peregon, Anna ; Pfeil, Benjamin ; Pierrot, Denis ; Poulter, Benjamin ; Rehder, Gregor ; Reimer, Janet ; Rödenbeck, Christian ; Schwinger, Jorg ; Séférian, Roland ; Skjelvan, Ingunn ; Stocker, Benjamin D. ; Tian, Hanqin ; Tilbrook, Bronte ; Tubiello, Francesco N. ; van der Laan-Luijkx, Ingrid T. ; van der Werf, Guido R. ; van Heuven, Steven ; Viovy, Nicolas ; Vuichard, Nicolas ; Walker, Anthony P. ; Watson, Andrew J. ; Wiltshire, Andrew J. ; Zaehle, Sonke ; Zhu, Dan
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).
  • Article
    A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic
    (American Geophysical Union, 2004-09-21) Lima, Ivan D. ; Doney, Scott C.
    We incorporate multinutrient and size-structured ecosystem dynamics into a three-dimensional ocean general circulation model for the North Atlantic. The model reproduces the magnitude and general spatial and temporal patterns in nutrients, chlorophyll and primary production seen in in situ (BATS, NABE, and OWSI) and satellite (SeaWiFS) data, showing substantial improvements over prior basin-scale simulations. Model skill is evaluated quantitatively against SeaWiFS data using a Taylor diagram approach. Model-data correlation R for the overall surface chlorophyll time-space distribution is ∼0.6, with comparable model and observed total variability. The agreement relative to satellite-based primary production is somewhat weaker (0.2 < R < 0.5). The simulations capture observed ecological characteristics, e.g., the dominance of picoplankton and episodic diatom blooms in the subtropics, nutrient-controlled plankton succession at higher latitudes, and associated seasonal/depth changes in new and regenerated production and particle export. In a sensitivity experiment that mimics behavior of simpler single-species models, removal of diatom silica limitation leads to major shifts in community structure and export and larger model-data errors similar to previous model studies. Model results also suggest that episodic diatom blooms at BATS may be related to interannual variations in the southward transport of nutrients, mainly SiO3, and plankton cells.