Smith Neville

No Thumbnail Available
Last Name
Smith
First Name
Neville
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Tropical pacific observing system
    (Frontiers Media, 2019-02-18) Smith, Neville ; Kessler, William S. ; Cravatte, Sophie ; Sprintall, Janet ; Wijffels, Susan E. ; Cronin, Meghan F. ; Sutton, Adrienne J. ; Serra, Yolande L. ; Dewitte, Boris ; Strutton, Peter G. ; Hill, Katherine Louise ; Sen Gupta, Alexander ; Lin, Xiaopei ; Takahashi, Ken ; Chen, Dake ; Brunner, Shelby
    This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
  • Article
    Ocean FAIR data services
    (Frontiers Media, 2019-08-07) Tanhua, Toste ; Pouliquen, Sylvie ; Hausman, Jessica ; O’Brien, Kevin ; Bricher, Phillippa ; de Bruin, Taco ; Buck, Justin J. H. ; Burger, Eugene ; Carval, Thierry ; Casey, Kenneth S. ; Diggs, Stephen ; Giorgetti, Alessandra ; Glaves, Helen ; Harscoat, Valerie ; Kinkade, Danie ; Muelbert, Jose H. ; Novellino, Antonio ; Pfeil, Benjamin ; Pulsifer, Peter L. ; Van de Putte, Anton ; Robinson, Erin ; Schaap, Dick ; Smirnov, Alexander ; Smith, Neville ; Snowden, Derrick ; Spears, Tobias ; Stall, Shelley ; Tacoma, Marten ; Thijsse, Peter ; Tronstad, Stein ; Vandenberghe, Thomas ; Wengren, Micah ; Wyborn, Lesley ; Zhao, Zhiming
    Well-founded data management systems are of vital importance for ocean observing systems as they ensure that essential data are not only collected but also retained and made accessible for analysis and application by current and future users. Effective data management requires collaboration across activities including observations, metadata and data assembly, quality assurance and control (QA/QC), and data publication that enables local and interoperable discovery and access and secures archiving that guarantees long-term preservation. To achieve this, data should be findable, accessible, interoperable, and reusable (FAIR). Here, we outline how these principles apply to ocean data and illustrate them with a few examples. In recent decades, ocean data managers, in close collaboration with international organizations, have played an active role in the improvement of environmental data standardization, accessibility, and interoperability through different projects, enhancing access to observation data at all stages of the data life cycle and fostering the development of integrated services targeted to research, regulatory, and operational users. As ocean observing systems evolve and an increasing number of autonomous platforms and sensors are deployed, the volume and variety of data increase dramatically. For instance, there are more than 70 data catalogs that contain metadata records for the polar oceans, a situation that makes comprehensive data discovery beyond the capacity of most researchers. To better serve research, operational, and commercial users, more efficient turnaround of quality data in known formats and made available through Web services is necessary. In particular, automation of data workflows will be critical to reduce friction throughout the data value chain. Adhering to the FAIR principles with free, timely, and unrestricted access to ocean observation data is beneficial for the originators, has obvious benefits for users, and is an essential foundation for the development of new services made possible with big data technologies.