Brankovits
David
Brankovits
David
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleAn integrative re-evaluation of Typhlatya shrimp within the karst aquifer of the Yucatan Peninsula, Mexico(Nature Research, 2022-03-29) Ballou, Lauren ; Brankovits, David ; Chávez-Solís, Efraín M. ; Chávez Díaz, José M. ; Gonzalez, Brett C. ; Rohret, Shari ; Salinas, Alexa ; Liu, Arielle ; Simões, Nuno ; Alvarez, Fernando ; Miglietta, Maria Pia ; Iliffe, Thomas ; Borda, ElizabethThe Yucatán Peninsula, Mexico is a carbonate platform well-known for extensive karst networks of densely stratified aquifer ecosystems. This aquifer supports diverse anchialine fauna, including species of the globally distributed anchialine shrimp genus Typhlatya (Atyidae). Four species (T. campecheae, T. pearsei, T. dzilamensis and T. mitchelli) are endemic to the Peninsula, of which three are federally listed in Mexico. This first integrative evaluation (i.e., molecular, morphological, broad geographic and type locality sampling, and environmental data) of Yucatán Typhlatya reveals considerable species identity conflict in prior phylogenetic assessments, broad species ranges, syntopy within cave systems and five genetic lineages (of which two are new to science). Despite sampling from the type locality of endangered T. campecheae, specimens (and molecular data) were indistinguishable from vulnerable T. pearsei. Ancestral/divergence reconstructions support convergent evolution of a low-salinity ancestor for a post-Paleogene arc Yucatán + Cuba Typhlatya clade within the anchialine Atyidae clade. A secondary adaptation for the coastal-restricted euryhaline (2–37 psu), Typhlatya dzilamensis (unknown conservation status) was identified, while remaining species lineages were low-salinity (< 5 psu) adapted and found within the meteoric lens of inland and coastal caves. This study demonstrates the need for integrative/interdisciplinary approaches when conducting biodiversity assessments in complex and poorly studied aquifers.
-
ArticleOxygenation of a karst subterranean estuary during a tropical cyclone: mechanisms and implications for the carbon cycle(Association for the Sciences of Limnology and Oceanography, 2022-09-23) Brankovits, David ; Pohlman, John W. ; Lapham, Laura L.Seasonal precipitation affects carbon turnover and methane accumulation in karst subterranean estuaries, the region of coastal carbonate aquifers where hydrologic and biogeochemical processes regulate material exchange between the land and ocean. However, the impact that tropical cyclones exert on subsurface carbon cycling within karst landscapes is poorly understood. Here, we present 5‐month‐long hydrologic and chemical records from 1 and 2 km inland from the coastline within the Ox Bel Ha Cave System in the northeastern Yucatan Peninsula. The record encompasses wet and dry seasons and includes the impact of rainfall during the development of Tropical Storm Hanna in October 2014. Methane accumulated in highest concentrations at the inland site, especially during the wet season preceding the storm. Intense rainfall led to episodic increases in water level and salinity shifts at both sites, indicating a spatially widespread hydrologic response. The most profound storm effect was a ~ 0.8 mg L−1 pulse of dissolved oxygen that declined to zero within 2 weeks and corresponded with a reduction of methane. A positive shift in methane's stable carbon isotope content from −62.6‰ ± 0.6‰ before the storm to −44.0‰ ± 2.4‰ after the storm indicates microbial methane oxidation was a mechanism for the loss of groundwater methane. Post‐storm methane concentrations did not recover to pre‐storm levels during the observation period, suggesting tropical cyclones have long‐lasting (months) effects on the carbon cycle. Compared to seasonal effects, mixing and oxygen inputs during storm‐induced hydrologic forcing have an outsized biogeochemical influence within stratified coastal aquifers.
-
ArticleHydrologic controls of methane dynamics in Karst subterranean estuaries(American Geophysical Union, 2018-11-09) Brankovits, David ; Pohlman, John W. ; Ganju, Neil K. ; Iliffe, Thomas ; Lowell, Nick ; Roth, Erich ; Sylva, Sean P. ; Emmert, Jake ; Lapham, Laura L.Karst subterranean estuaries (KSEs) extend into carbonate platforms along 12% of all coastlines. A recent study has shown that microbial methane (CH4) consumption is an important component of the carbon cycle and food web dynamics within flooded caves that permeate KSEs. In this study, we obtained high‐resolution (~2.5‐day) temporal records of dissolved methane concentrations and its stable isotopic content (δ13C) to evaluate how regional meteorology and hydrology control methane dynamics in KSEs. Our records show that less methane was present in the anoxic fresh water during the wet season (4,361 ± 89 nM) than during the dry season (5,949 ± 132 nM), suggesting that the wet season hydrologic regime enhances mixing of methane and other constituents into the underlying brackish water. The δ13C of the methane (−38.1 ± 1.7‰) in the brackish water was consistently more 13C‐enriched than fresh water methane (−65.4 ± 0.4‰), implying persistent methane oxidation in the cave. Using a hydrologically based mass balance model, we calculate that methane consumption in the KSE was 21–28 mg CH4·m−2·year−1 during the 6‐month dry period, which equates to ~1.4 t of methane consumed within the 102‐ to 138‐km2 catchment basin for the cave. Unless wet season methane consumption is much greater, the magnitude of methane oxidized within KSEs is not likely to affect the global methane budget. However, our estimates constrain the contribution of a critical resource for this widely distributed subterranean ecosystem.
-
ArticleMethane- and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem(Nature Publishing Group, 2017-11-28) Brankovits, David ; Pohlman, John W. ; Niemann, Helge ; Leigh, Mary Beth ; Leewis, Mary-Cathrine ; Becker, Kevin W. ; Iliffe, Thomas ; Alvarez, Fernando ; Lehmann, Moritz F. ; Phillips, BilSubterranean estuaries extend inland into density-stratified coastal carbonate aquifers containing a surprising diversity of endemic animals (mostly crustaceans) within a highly oligotrophic habitat. How complex ecosystems (termed anchialine) thrive in this globally distributed, cryptic environment is poorly understood. Here, we demonstrate that a microbial loop shuttles methane and dissolved organic carbon (DOC) to higher trophic levels of the anchialine food web in the Yucatan Peninsula (Mexico). Methane and DOC production and consumption within the coastal groundwater correspond with a microbial community capable of methanotrophy, heterotrophy, and chemoautotrophy, based on characterization by 16S rRNA gene amplicon sequencing and respiratory quinone composition. Fatty acid and bulk stable carbon isotope values of cave-adapted shrimp suggest that carbon from methanotrophic bacteria comprises 21% of their diet, on average. These findings reveal a heretofore unrecognized subterranean methane sink and contribute to our understanding of the carbon cycle and ecosystem function of karst subterranean estuaries.