Ayton Benjamin

No Thumbnail Available
Last Name
Ayton
First Name
Benjamin
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Using a Ladder of Seeps with computer decision processes to explore for and evaluate cold seeps on the Costa Rica active margin
    (Frontiers Media, 2021-03-11) Vrolijk, Peter ; Summa, Lori ; Ayton, Benjamin ; Nomikou, Paraskevi ; Hüpers, Andre ; Kinnaman, Frank ; Sylva, Sean ; Valentine, David L. ; Camilli, Richard
    Natural seeps occur at the seafloor as loci of fluid flow where the flux of chemical compounds into the ocean supports unique biologic communities and provides access to proxy samples of deep subsurface processes. Cold seeps accomplish this with minimal heat flux. While individual expertize is applied to locate seeps, such knowledge is nowhere consolidated in the literature, nor are there explicit approaches for identifying specific seep types to address discrete scientific questions. Moreover, autonomous exploration for seeps lacks any clear framework for efficient seep identification and classification. To address these shortcomings, we developed a Ladder of Seeps applied within new decision-assistance algorithms (Spock) to assist in seep exploration on the Costa Rica margin during the R/V Falkor 181210 cruise in December, 2018. This Ladder of Seeps [derived from analogous astrobiology criteria proposed by Neveu et al. (2018)] was used to help guide human and computer decision processes for ROV mission planning. The Ladder of Seeps provides a methodical query structure to identify what information is required to confirm a seep either: 1) supports seafloor life under extreme conditions, 2) supports that community with active seepage (possible fluid sample), or 3) taps fluids that reflect deep, subsurface geologic processes, but the top rung may be modified to address other scientific questions. Moreover, this framework allows us to identify higher likelihood seep targets based on existing incomplete or easily acquired data, including MBES (Multi-beam echo sounder) water column data. The Ladder of Seeps framework is based on information about the instruments used to collect seep information (e.g., are seeps detectable by the instrument with little chance of false positives?) and contextual criteria about the environment in which the data are collected (e.g., temporal variability of seep flux). Finally, the assembled data are considered in light of a Last-Resort interpretation, which is only satisfied once all other plausible data interpretations are excluded by observation. When coupled with decision-making algorithms that incorporate expert opinion with data acquired during the Costa Rica experiment, the Ladder of Seeps proved useful for identifying seeps with deep-sourced fluids, as evidenced by results of geochemistry analyses performed following the expedition.
  • Thesis
    Query-driven adaptive sampling
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2022-09) Ayton, Benjamin ; Williams, Brian C. ; Camilli, Richard
    Automated information gathering allows exploration of environments where data is limited and gathering observations introduces risk, such as underwater and planetary exploration. Typically, exploration has been performed in service of a query, with a unique algorithm developed for each mission. Yet this approach does not allow scientists to respond to novel questions as they are raised. In this thesis, we develop a single approach for a broad range of adaptive sampling missions with risk and limited prior knowledge. To achieve this, we present contributions in planning adaptive missions in service of queries, and modeling multi-attribute environments. First, we define a query language suitable for specifying diverse goals in adaptive sampling. The language fully encompasses objectives from previous adaptive sampling approaches, and significantly extends the possible range of objectives. We prove that queries expressible in this language are not biased in a way that avoids information. We then describe a Monte Carlo tree search approach to plan for all queries in our language, using sample based objective estimators embedded within tree search. This approach outperforms methods that maximize information about all variables in hydrocarbon seep search and fire escape scenarios. Next, we show how to plan when the policy must bound risk as a function of reward. By solving approximating problems, we guarantee risk bounds on policies with large numbers of actions and continuous observations, ensuring that risks are only taken when justified by reward. Exploration is limited by the quality of the environment model, so we introduce Gaussian process models with directed acyclic structure to improve model accuracy under limited data. The addition of interpretable structure allows qualitative expert knowledge of the environment to be encoded through structure and parameter constraints. Since expert knowledge may be incomplete, we introduce efficient structure learning over structural models using A* search with bounding conflicts. By placing bounds on likelihood of substructures, we limit the number of structures that are trained, significantly accelerating search. Experiments modeling geographic data show that our model produces more accurate predictions than existing Gaussian process methods, and using bounds allows structure to be learned in 50% of the time.