Gaube
Peter
Gaube
Peter
No Thumbnail Available
Search Results
Now showing
1 - 17 of 17
-
ArticleMesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea(Nature Publishing Group, 2018-05-09) Gaube, Peter ; Braun, Camrin D. ; Lawson, Gareth L. ; McGillicuddy, Dennis J. ; Penna, Alice Della ; Skomal, Gregory B. ; Fischer, Chris ; Thorrold, Simon R.Satellite-tracking of mature white sharks (Carcharodon carcharias) has revealed open-ocean movements spanning months and covering tens of thousands of kilometers. But how are the energetic demands of these active apex predators met as they leave coastal areas with relatively high prey abundance to swim across the open ocean through waters often characterized as biological deserts? Here we investigate mesoscale oceanographic variability encountered by two white sharks as they moved through the Gulf Stream region and Sargasso Sea in the North Atlantic Ocean. In the vicinity of the Gulf Stream, the two mature female white sharks exhibited extensive use of the interiors of clockwise-rotating anticyclonic eddies, characterized by positive (warm) temperature anomalies. One tagged white shark was also equipped with an archival tag that indicated this individual made frequent dives to nearly 1,000 m in anticyclones, where it was presumably foraging on mesopelagic prey. We propose that warm temperature anomalies in anticyclones make prey more accessible and energetically profitable to adult white sharks in the Gulf Stream region by reducing the physiological costs of thermoregulation in cold water. The results presented here provide valuable new insight into open ocean habitat use by mature, female white sharks that may be applicable to other large pelagic predators.
-
ArticleMesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone(National Academy of Sciences, 2019-08-06) Braun, Camrin D. ; Gaube, Peter ; Sinclair-Taylor, Tane H. ; Skomal, Gregory B. ; Thorrold, Simon R.Mesoscale eddies are critical components of the ocean’s “internal weather” system. Mixing and stirring by eddies exerts significant control on biogeochemical fluxes in the open ocean, and eddies may trap distinctive plankton communities that remain coherent for months and can be transported hundreds to thousands of kilometers. Debate regarding how and why predators use fronts and eddies, for example as a migratory cue, enhanced forage opportunities, or preferred thermal habitat, has been ongoing since the 1950s. The influence of eddies on the behavior of large pelagic fishes, however, remains largely unexplored. Here, we reconstruct movements of a pelagic predator, the blue shark (Prionace glauca), in the Gulf Stream region using electronic tags, earth-observing satellites, and data-assimilating ocean forecasting models. Based on >2,000 tracking days and nearly 500,000 high-resolution time series measurements collected by 15 instrumented individuals, we show that blue sharks seek out the interiors of anticyclonic eddies where they dive deep while foraging. Our observations counter the existing paradigm that anticyclonic eddies are unproductive ocean “deserts” and suggest anomalously warm temperatures in these features connect surface-oriented predators to the most abundant fish community on the planet in the mesopelagic. These results also shed light on the ecosystem services provided by mesopelagic prey. Careful consideration will be needed before biomass extraction from the ocean twilight zone to avoid interrupting a key link between planktonic production and top predators. Moreover, robust associations between targeted fish species and oceanographic features increase the prospects for effective dynamic ocean management.
-
ArticleOn the vertical velocity and nutrient delivery in warm core rings(American Meteorological Society, 2020-05-12) Chen, Ke ; Gaube, Peter ; Pallás-Sanz, EnricWe examine various contributions to the vertical velocity field within large mesoscale eddies by analyzing multiple solutions to an idealized numerical model of a representative anticyclonic warm core Gulf Stream ring. Initial conditions are constructed to reproduce the observed density and nutrient profiles collected during the Warm Core Rings Program. The contributions to vertical fluxes diagnosed from the numerical simulations are compared against a divergence-based, semidiagnostic equation and a generalized omega equation to better understand the dynamics of the vertical velocity field. Frictional decay alone is found to be ineffective in raising isopycnals and transporting nutrients to the upper ocean. With representative wind forcing, the magnitude of vorticity gradient–induced Ekman pumping is not necessarily larger than the current-induced counterpart on a time scale relevant to ecosystem response. Under realistic forcing conditions, strain deformation can perturb the ring to be noncircular and induce vertical velocities much larger than the Ekman vertical velocities. Nutrient budget diagnosis, together with analysis of the relative magnitudes of the various types of vertical fluxes, allows us to describe the time-scale dependence of nutrient delivery. At time scales that are relevant to individual phytoplankton (from hours to days), the magnitudes of nutrient flux by Ekman velocities and deformation-induced velocities are comparable. Over the life span of a typical warm core ring, which can span multiple seasons, surface current–induced Ekman pumping is the most effective mechanism in upper-ocean nutrient enrichment because of its persistence in the center of anticyclones regardless of the direction of the wind forcing.
-
ArticleFirst records of two large pelagic fishes in the Red Sea: wahoo (Acanthocybium solandri) and striped marlin (Kajikia audax)(Cambridge University Press, 2022-11-02) Williams, Collin T. ; Arostegui, Martin C. ; Braun, Camrin D. ; Gaube, Peter ; Shriem, Marwan ; Berumen, Michael L.This report provides the first confirmed identifications of wahoo (Acanthocybium solandri) and striped marlin (Kajikia audax) in the Red Sea, expanding the known ranges of these species into the basin. Potential mechanisms responsible for the lack of regional documentation of the two species are further discussed. These findings illustrate the need for systematic biodiversity surveys of pelagic fish assemblages in the Red Sea.
-
ArticleSatellite observations of mesoscale eddy-induced Ekman pumping(American Meteorological Society, 2015-01) Gaube, Peter ; Chelton, Dudley B. ; Samelson, Roger M. ; Schlax, Michael G. ; O’Neill, Larry W.Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies are investigated. The first arises from the surface stress that occurs because of differences between surface wind and ocean velocities, resulting in Ekman upwelling and downwelling in the cores of anticyclones and cyclones, respectively. The second mechanism arises from the interaction of the surface stress with the surface current vorticity gradient, resulting in dipoles of Ekman upwelling and downwelling. The third mechanism arises from eddy-induced spatial variability of sea surface temperature (SST), which generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients. The spatial structures and relative magnitudes of the three contributions to eddy-induced Ekman pumping are investigated by collocating satellite-based measurements of SST, geostrophic velocity, and surface winds to the interiors of eddies identified from their sea surface height signatures. On average, eddy-induced Ekman pumping velocities approach O(10) cm day−1. SST-induced Ekman pumping is usually secondary to the two current-induced mechanisms for Ekman pumping. Notable exceptions are the midlatitude extensions of western boundary currents and the Antarctic Circumpolar Current, where SST gradients are strong and all three mechanisms for eddy-induced Ekman pumping are comparable in magnitude. Because the polarity of current-induced curl of the surface stress opposes that of the eddy, the associated Ekman pumping attenuates the eddies. The decay time scale of this attenuation is proportional to the vertical scale of the eddy and inversely proportional to the wind speed. For typical values of these parameters, the decay time scale is about 1.3 yr.
-
ArticleGlobally consistent quantitative observations of planktonic ecosystems(Frontiers Media, 2019-04-25) Lombard, Fabien ; Boss, Emmanuel S. ; Waite, Anya M. ; Vogt, Meike ; Uitz, Julia ; Stemmann, Lars ; Sosik, Heidi M. ; Schulz, Jan ; Romagnan, Jean-Baptiste ; Picheral, Marc ; Pearlman, Jay ; Ohman, Mark D. ; Niehoff, Barbara ; Möller, Klas O. ; Miloslavich, Patricia ; Lara-Lpez, Ana ; Kudela, Raphael M. ; Lopes, Rubens M. ; Kiko, Rainer ; Karp-Boss, Lee ; Jaffe, Jules S. ; Iversen, Morten H. ; Irisson, Jean-Olivier ; Fennel, Katja ; Hauss, Helena ; Guidi, Lionel ; Gorsky, Gabriel ; Giering, Sarah L. C. ; Gaube, Peter ; Gallager, Scott M. ; Dubelaar, George ; Cowen, Robert K. ; Carlotti, François ; Briseño-Avena, Christian ; Berline, Leo ; Benoit-Bird, Kelly J. ; Bax, Nicholas ; Batten, Sonia ; Ayata, Sakina Dorothée ; Artigas, Luis Felipe ; Appeltans, WardIn this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration.
-
ArticleMesoscale eddies modulate mixed layer depth globally.(American Geophysical Union, 2018-12-06) Gaube, Peter ; McGillicuddy, Dennis J. ; Moulin, Aurélie J.Mesoscale eddies, energetic vortices covering nearly a third of the ocean surface at any one time, modulate the spatial and temporal evolution of the mixed layer. We present a global analysis of concurrent satellite observations of mesoscale eddies with hydrographic profiles by autonomous Argo floats, revealing rich geographic and seasonal variability in the influence of eddies on mixed layer depth. Anticyclones deepen the mixed layer depth, whereas cyclones thin it, with the magnitude of these eddy‐induced mixed layer depth anomalies being largest in winter. Eddy‐centric composite averages reveal that the largest anomalies occur at the eddy center and decrease with distance from the center. Furthermore, the extent to which eddies modulate mixed layer depth is linearly related to the sea surface height amplitude of the eddies. Finally, large eddy‐mediated mixed layer depth anomalies are more common in anticyclones when compared to cyclones. We present candidate mechanisms for this observed asymmetry.
-
ArticleRegional variations in the influence of mesoscale eddies on near-surface chlorophyll(John Wiley & Sons, 2014-12-01) Gaube, Peter ; McGillicuddy, Dennis J. ; Chelton, Dudley B. ; Behrenfeld, Michael J. ; Strutton, Peter G.Eddies can influence biogeochemical cycles through a variety of mechanisms, including the excitation of vertical velocities and the horizontal advection of nutrients and ecosystems, both around the eddy periphery by rotational currents and by the trapping of fluid and subsequent transport by the eddy. In this study, we present an analysis of the influence of mesoscale ocean eddies on near-surface chlorophyll (CHL) estimated from satellite measurements of ocean color. The influences of horizontal advection, trapping, and upwelling/downwelling on CHL are analyzed in an eddy-centric frame of reference by collocating satellite observations to eddy interiors, as defined by their sea surface height signatures. The influence of mesoscale eddies on CHL varies regionally. In most boundary current regions, cyclonic eddies exhibit positive CHL anomalies and anticyclonic eddies contain negative CHL anomalies. In the interior of the South Indian Ocean, however, the opposite occurs. The various mechanisms by which eddies can influence phytoplankton communities are summarized and regions where the observed CHL response to eddies is consistent with one or more of the mechanisms are discussed. This study does not attempt to link the observed regional variability definitively to any particular mechanism but provides a global overview of how eddies influence CHL anomalies.
-
ArticleVertical movements of a pelagic thresher shark (Alopias pelagicus): insights into the species' physiological limitations and trophic ecology in the Red Sea(Inter Research, 2020-12-03) Arostegui, Martin C. ; Gaube, Peter ; Berumen, Michael L. ; DiGiulian, Anthony ; Jones, Burton H. ; Røstad, Anders ; Braun, Camrin D.The pelagic thresher shark Alopias pelagicus is an understudied elasmobranch harvested in commercial fisheries of the tropical Indo-Pacific. The species is endangered, overexploited throughout much of its range, and has a decreasing population trend. Relatively little is known about its movement ecology, precluding an informed recovery strategy. Here, we report the first results from an individual pelagic thresher shark outfitted with a pop-up satellite archival transmitting (PSAT) tag to assess its movement with respect to the species’ physiology and trophic ecology. A 19 d deployment in the Red Sea revealed that the shark conducted normal diel vertical migration, spending the majority of the day at 200-300 m in the mesopelagic zone and the majority of the night at 50-150 m in the epipelagic zone, with the extent of these movements seemingly not constrained by temperature. In contrast, the depth distribution of the shark relative to the vertical distribution of oxygen suggested that it was avoiding hypoxic conditions below 300 m even though that is where the daytime peak of acoustic backscattering occurs in the Red Sea. Telemetry data also indicated crepuscular and daytime overlap of the shark’s vertical habitat use with distinct scattering layers of small mesopelagic fishes and nighttime overlap with nearly all mesopelagic organisms in the Red Sea as these similarly undergo nightly ascents into epipelagic waters. We identify potential depths and diel periods in which pelagic thresher sharks may be most susceptible to fishery interactions, but more expansive research efforts are needed to inform effective management.
-
ArticleAnomalous chlorofluorocarbon uptake by mesoscale eddies in the Drake Passage region(John Wiley & Sons, 2015-02-23) Song, Hajoon ; Marshall, John C. ; Gaube, Peter ; McGillicuddy, Dennis J.The role of mesoscale eddies in the uptake of anthropogenic chlorofluorocarbon-11 (CFC-11) gas is investigated with a 1/20° eddy-resolving numerical ocean model of a region of the Southern Ocean. With a relatively fast air-sea equilibrium time scale (about a month), the air-sea CFC-11 flux quickly responds to the changes in the mixed layer CFC-11 partial pressure (pCFC-11). At the mesoscale, significant correlations are observed between pCFC-11 anomaly, anomalies in sea surface temperature (SST), net heat flux, and mixed layer depth. An eddy-centric analysis of the simulated CFC-11 field suggests that anticyclonic warm-core eddies generate negative pCFC-11 anomalies and cyclonic cold-core eddies generate positive anomalies of pCFC-11. Surface pCFC-11 is modulated by mixed layer dynamics in addition to CFC-11 air-sea fluxes. A negative cross correlation between mixed layer depth and surface pCFC-11 anomalies is linked to higher CFC-11 uptake in anticyclones and lower CFC-11 uptake in cyclones, especially in winter. An almost exact asymmetry in the air-sea CFC-11 flux between cyclones and anticyclones is found.
-
ArticleThe use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic(Public Library of Science, 2017-03-01) Gaube, Peter ; Barceló, Caren ; McGillicuddy, Dennis J. ; Domingo, Andrés ; Miller, Philip ; Giffoni, Bruno ; Marcovaldi, Neca ; Swimmer, YonatMarine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50–100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features.
-
ArticleLagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites(European Geosciences Union, 2022-12-21) McKee, Darren C ; Doney, Scott C ; Della Penna, Alice ; Boss, Emmanuel S ; Gaube, Peter ; Behrenfeld, Michael J ; Glover, David MPhytoplankton form the base of marine food webs and play an important role in carbon cycling, making it important to quantify rates of biomass accumulation and loss. As phytoplankton drift with ocean currents, rates should be evaluated in a Lagrangian as opposed to an Eulerian framework. In this study, we quantify the Lagrangian (from Bio-Argo floats and surface drifters with satellite ocean colour) and Eulerian (from satellite ocean colour and altimetry) statistics of mesoscale chlorophyll and velocity by computing decorrelation time and length scales and relate the frames by scaling the material derivative of chlorophyll. Because floats profile vertically and are not perfect Lagrangian observers, we quantify the mean distance between float and surface geostrophic trajectories over the time spanned by three consecutive profiles (quasi-planktonic index, QPI) to assess how their sampling is a function of their deviations from surface motion. Lagrangian and Eulerian statistics of chlorophyll are sensitive to the filtering used to compute anomalies. Chlorophyll anomalies about a 31 d time filter reveal an approximate equivalence of Lagrangian and Eulerian tendencies, suggesting they are driven by ocean colour pixel-scale processes and sources or sinks. On the other hand, chlorophyll anomalies about a seasonal cycle have Eulerian scales similar to those of velocity, suggesting mesoscale stirring helps set distributions of biological properties, and ratios of Lagrangian to Eulerian timescales depend on the magnitude of velocity fluctuations relative to an evolution speed of the chlorophyll fields in a manner similar to earlier theoretical results for velocity scales. The results suggest that stirring by eddies largely sets Lagrangian time and length scales of chlorophyll anomalies at the mesoscale.
-
ArticleSeasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic(Nature Research, 2021-11-17) Diaz, Ben P. ; Knowles, Benjamin ; Johns, Christopher T. ; Laber, Christien P. ; Bondoc, Karen Grace V. ; Haramaty, Liti ; Natale, Frank ; Harvey, Elizabeth L. ; Kramer, Sasha J. ; Bolaños, Luis M. ; Lowenstein, Daniel P. ; Fredricks, Helen F. ; Graff, Jason R. ; Westberry, Toby K. ; Mojica, Kristina D. A. ; Haëntjens, Nils ; Baetge, Nicholas ; Gaube, Peter ; Boss, Emmanuel S. ; Carlson, Craig A. ; Behrenfeld, Michael J. ; Van Mooy, Benjamin A. S. ; Bidle, Kay D.Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.
-
ArticleSatellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies(John Wiley & Sons, 2013-12-02) Gaube, Peter ; Chelton, Dudley B. ; Strutton, Peter G. ; Behrenfeld, Michael J.Nonlinear mesoscale eddies can influence biogeochemical cycles in the upper ocean through vertical and horizontal advection of nutrients and marine organisms. The relative importance of these two processes depends on the polarity of an eddy (cyclones versus anticyclones) and the initial biological conditions of the fluid trapped in the core of the eddy at the time of formation. Eddies originating in the eastern South Indian Ocean are unique in that anticyclones, typically associated with downwelling, contain elevated levels of chlorophyll-a, enhanced primary production and phytoplankton communities generally associated with nutrient-replete environments. From analysis of 9 years of concurrent satellite measurements of sea surface height, chlorophyll, phytoplankton carbon, and surface stress, we present observations that suggest eddy-induced Ekman upwelling as a mechanism that is at least partly responsible for sustaining positive phytoplankton anomalies in anticyclones of the South Indian Ocean. The biological response to this eddy-induced Ekman upwelling is evident only during the Austral winter. During the Austral summer, the biological response to eddy-induced Ekman pumping occurs deep in the euphotic zone, beyond the reach of satellite observations of ocean color.
-
ArticleDiverse variability of surface chlorophyll during the evolution of Gulf Stream rings(American Geophysical Union, 2021-02-16) Ning, Jue ; Chen, Ke ; Gaube, PeterWe investigate how the near-surface chlorophyll (CHL)-a evolves in Gulf Stream (GS) warm-core rings (WCRs) and cold-core rings (CCRs) using multi-platform satellite observations. Averaged CHL anomaly (CHLA) within the rings exhibits both positive and negative linear trends during the evolution of the WCRs while negative trends dominate in CCRs. This difference is associated with a variety of physical processes occurring during the evolution process. Meanwhile, eddy-centric analysis reveals four spatial patterns of CHLA long-term trends, some of which highlights the importance of rings in shaping surface CHL. Short-term fluctuations of CHLA in WCRs and CCRs are closely correlated with mixed layer depth and sea surface temperature anomaly and highlight the complex interplay between multiple mechanisms. In addition, we find higher concentration CHL in some WCRs than that in CCRs during the same season, providing an alternative view of the characteristics of the surface ecosystem in Gulf Stream rings.
-
ArticleLinking vertical movements of large pelagic predators with distribution patterns of biomass in the open ocean.(National Academy of Sciences, 2023-11-06) Braun, Camrin D. ; Penna, Alice Della ; Arostegui, Martin C. ; Afonso, Pedro ; Berumen, Michael L. ; Block, Barbara A. ; Brown, Craig A. ; Fontes, Jorge ; Furtado, Miguel ; Gallagher, Austin J. ; Gaube, Peter ; Golet, Walter J. ; Kneebone, Jeff ; Macena, Bruno C. L. ; Mucientes, Gonzalo ; Orbesen, Eric S. ; Queiroz, Nuno ; Shea, Brendan D. ; Schratwieser, Jason ; Sims, David W. ; Skomal, Gregory B. ; Snodgrass, Derke ; Thorrold, Simon R.Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in >42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.
-
ArticleSeasonal variation in the correlation between anomalies of sea level and chlorophyll in the Antarctic Circumpolar Current(John Wiley & Sons, 2018-05-30) Song, Hajoon ; Long, Matthew C. ; Gaube, Peter ; Frenger, Ivy ; Marshall, John C. ; McGillicuddy, Dennis J.The Antarctic Circumpolar Current has highly energetic mesoscale phenomena, but their impacts on phytoplankton biomass, productivity, and biogeochemical cycling are not understood well. We analyze satellite observations and an eddy‐rich ocean model to show that they drive chlorophyll anomalies of opposite sign in winter versus summer. In winter, deeper mixed layers in positive sea surface height (SSH) anomalies reduce light availability, leading to anomalously low chlorophyll concentrations. In summer with abundant light, however, positive SSH anomalies show elevated chlorophyll concentration due to higher iron level, and an iron budget analysis reveals that anomalously strong vertical mixing enhances iron supply to the mixed layer. Features with negative SSH anomalies exhibit the opposite tendencies: higher chlorophyll concentration in winter and lower in summer. Our results suggest that mesoscale modulation of iron supply, light availability, and vertical mixing plays an important role in causing systematic variations in primary productivity over the seasonal cycle.