Fogarty Michael J.

No Thumbnail Available
Last Name
Fogarty
First Name
Michael J.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Why compare marine ecosystems?
    (Oxford University Press, 2009-08-30) Murawski, Steven A. ; Steele, John H. ; Taylor, Phillip ; Fogarty, Michael J. ; Sissenwine, Michael P. ; Ford, Michael ; Suchman, Cynthia
    Effective marine ecosystem-based management (EBM) requires understanding the key processes and relationships controlling the aspects of biodiversity, productivity, and resilience to perturbations. Unfortunately, the scales, complexity, and non-linear dynamics that characterize marine ecosystems often confound managing for these properties. Nevertheless, scientifically derived decision-support tools (DSTs) are needed to account for impacts resulting from a variety of simultaneous human activities. Three possible methodologies for revealing mechanisms necessary to develop DSTs for EBM are: (i) controlled experimentation, (ii) iterative programmes of observation and modelling ("learning by doing"), and (iii) comparative ecosystem analysis. We have seen that controlled experiments are limited in capturing the complexity necessary to develop models of marine ecosystem dynamics with sufficient realism at appropriate scales. Iterative programmes of observation, model building, and assessment are useful for specific ecosystem issues but rarely lead to generally transferable products. Comparative ecosystem analyses may be the most effective, building on the first two by inferring ecosystem processes based on comparisons and contrasts of ecosystem response to human-induced factors. We propose a hierarchical system of ecosystem comparisons to include within-ecosystem comparisons (utilizing temporal and spatial changes in relation to human activities), within-ecosystem-type comparisons (e.g. coral reefs, temperate continental shelves, upwelling areas), and cross-ecosystem-type comparisons (e.g. coral reefs vs. boreal, terrestrial vs. marine ecosystems). Such a hierarchical comparative approach should lead to better understanding of the processes controlling biodiversity, productivity, and the resilience of marine ecosystems. In turn, better understanding of these processes will lead to the development of increasingly general laws, hypotheses, functional forms, governing equations, and broad interpretations of ecosystem responses to human activities, ultimately improving DSTs in support of EBM.
  • Preprint
    Balancing end-to-end budgets of the Georges Bank ecosystem
    ( 2007-05-09) Steele, John H. ; Collie, Jeremy S. ; Bisagni, James J. ; Gifford, Dian J. ; Fogarty, Michael J. ; Link, Jason S. ; Sullivan, B. K. ; Sieracki, Michael E. ; Beet, Andrew R. ; Mountain, David G. ; Durbin, Edward G. ; Palka, D. ; Stockhausen, W. T.
    Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the lower food web for three physical regimes (well mixed, transitional and stratified) and for three seasons (spring, summer and fall/winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973 to 2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.
  • Preprint
    Toward cyberinfrastructure to facilitate collaboration and reproducibility for marine integrated ecosystem assessments
    ( 2016-10-20) Beaulieu, Stace E. ; Fox, Peter A. ; Di Stefano, Massimo ; Maffei, Andrew R. ; West, Patrick ; Hare, Jonathan A. ; Fogarty, Michael J.
    There is a growing need for cyberinfrastructure to support science-based decision making in management of natural resources. In particular, our motivation was to aid the development of cyberinfrastructure for Integrated Ecosystem Assessments (IEAs) for marine ecosystems. The IEA process involves analysis of natural and socio-economic information based on diverse and disparate sources of data, requiring collaboration among scientists of many disciplines and communication with other stakeholders. Here we describe our bottom-up approach to developing cyberinfrastructure through a collaborative process engaging a small group of domain and computer scientists and software engineers. We report on a use case evaluated for an Ecosystem Status Report, a multi-disciplinary report inclusive of Earth, life, and social sciences, for the Northeast U.S. Continental Shelf Large Marine Ecosystem. Ultimately, we focused on sharing workflows as a component of the cyberinfrastructure to facilitate collaboration and reproducibility. We developed and deployed a software environment to generate a portion of the Report, retaining traceability of derived datasets including indicators of climate forcing, physical pressures, and ecosystem states. Our solution for sharing workflows and delivering reproducible documents includes IPython (now Jupyter) Notebooks. We describe technical and social challenges that we encountered in the use case and the importance of training to aid the adoption of best practices and new technologies by domain scientists. We consider the larger challenges for developing end-to-end cyberinfrastructure that engages other participants and stakeholders in the IEA process.