Jenkyns
Hugh C.
Jenkyns
Hugh C.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
PreprintThallium isotopes in early diagenetic pyrite – a paleoredox proxy?( 2011-06-08) Nielsen, Sune G. ; Goff, Matt ; Hesselbo, Stephen P. ; Jenkyns, Hugh C. ; LaRowe, Douglas E. ; Lee, Cin-Ty A.This paper presents the first study of Tl isotopes in early diagenetic pyrite. Measurements from two sections deposited during the Toarcian Ocean Anoxic Event (T-OAE, ~183Ma) are compared with data from Late Neogene (<10Ma) pyrite samples from ODP legs 165 and 167 that were deposited in relatively oxic marine environments. The Tl isotope compositions of Late Neogene pyrites are all significantly heavier than seawater, which most likely indicates that Tl in diagenetic pyrite is partially sourced from ferromanganese oxy-hydroxides that are known to display relatively heavy Tl isotope signatures. One of the T-OAE sections from Peniche in Portugal displays pyrite thallium isotope compositions indistinguishable from Late Neogene samples, whereas samples from Yorkshire in the UK are depleted in the heavy isotope of Tl. These lighter compositions are best explained by the lack of ferromanganese precipitation at the sediment–water interface due the sulphidic (euxinic) conditions thought to be prevalent in the Cleveland Basin where the Yorkshire section was deposited. The heavier signatures in the Peniche samples appear to result from an oxic water column that enabled precipitation of ferromanganese oxy-hydroxides at the sediment–water interface. The Tl isotope profile from Yorkshire is also compared with previously published molybdenum isotope ratios determined on the same sedimentary succession. There is a suggestion of an anti-correlation between these two isotope systems, which is consistent with the expected isotope shifts that occur in seawater when marine oxic (ferromanganese minerals) fluxes fluctuate. The results outlined here represent the first evidence that Tl isotopes in early diagenetic pyrite have potential to reveal variations in past ocean oxygenation on a local scale and potentially also for global oceans. However, much more information about Tl isotopes in different marine environments, especially in anoxic/euxinic basins, is needed before Tl isotopes can be confidently utilized as a paleo-redox tracer.
-
ArticleUpper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2(John Wiley & Sons, 2015-05-13) Zhou, Xiaoli ; Jenkyns, Hugh C. ; Owens, Jeremy D. ; Junium, Christopher K. ; Zheng, Xin-Yuan ; Sageman, Bradley B. ; Hardisty, Dalton S. ; Lyons, Timothy W. ; Ridgwell, Andy ; Lu, ZunliGlobal warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.
-
PreprintOrganically bound iodine as a bottom-water redox proxy : preliminary validation and application( 2017-03-15) Zhou, Xiaoli ; Jenkyns, Hugh C. ; Lu, Wanyi ; Hardisty, Dalton S. ; Owens, Jeremy D. ; Lyons, Timothy W. ; Lu, ZunliCarbonate-associated iodine (I/Ca) has been used as a proxy of local, upper-ocean redox conditions, and has successfully demonstrated highly dynamic spatial and temporal patterns across different time scales of Earth history. To further explore the utility of iodine as a paleo-environmental proxy, we present here a new method of extracting organically bound iodine (Iorg) from shale using volumes of samples on the order of tens of milligrams, thus offering the potential for high-resolution work across thin shale beds. The ratio of Iorg to total organic carbon (I/TOC) in modern surface and subsurface sediments decreases with decreasing bottom-water oxygen, which may be used to reconstruct paleo-redox changes. As a proof of concept, we evaluate the I/TOC proxy in Holocene sediments from the Baltic Sea, Landsort Deep (IODP 347) and discuss those data within a framework of additional independent redox proxies, e.g., iron speciation and [Mo]. The results imply that I/TOC may be sensitive to hypoxic–suboxic conditions, complementary to proxies sensitive to more reducing, anoxic–euxinic conditions. Then, we test the usage of I/TOC in sediments deposited during Late Cretaceous, Cenomanian–Turonian Oceanic Anoxic Event (OAE) 2 from ~ 94 million years ago (Ma). We generated I/TOC and Iorg records from six OAE 2 sections: Tarfaya (Morocco), Furlo (central Italy), Demerara Rise (western equatorial Atlantic), Cape Verde Basin (eastern equatorial Atlantic), South Ferriby (UK), and Kerguelen Plateau (southern Indian Ocean), which provide a broad spatial coverage. Generally, I/TOC decreases over the interval recorded by the positive carbon-isotope excursion, the global signature of OAE 2, suggesting an expansion of more reducing bottom-water conditions and consistent with independent constraints from iron speciation and redox-sensitive trace-metals (e.g., Mo). Relatively higher I/TOC values (thus more oxic conditions) are recorded at two high latitude sites for OAE 2, supporting previous model simulations (cGENIE) that indicated higher bottom water oxygen concentrations in these regions. Our results also indicate that organic-rich and oxygenated seafloors are likely a major sink of iodine and correspondingly influence its global seawater inventory.