Ostrander
Chadlin M.
Ostrander
Chadlin M.
No Thumbnail Available
Search Results
Now showing
1 - 6 of 6
-
ArticleShale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events(Frontiers Media, 2022-04-26) Ostrander, Chadlin ; Kendall, Brian ; Gordon, Gwyneth W. ; Nielsen, Sune G. ; Zheng, Wang ; Anbar, Ariel D.Evidence of molecular oxygen (O2) accumulation at Earth’s surface during the Archean (4.0–2.5 billion years ago, or Ga) seems to increase in its abundance and compelling nature toward the end of the eon, during the runup to the Great Oxidation Event. Yet, many details of this late-Archean O2 story remain under-constrained, such as the extent, tempo, and location of O2 accumulation. Here, we present a detailed Fe, Tl, and U isotope study of shales from a continuous sedimentary sequence deposited between ∼2.6 and ∼2.5 Ga and recovered from the Pilbara Craton of Western Australia (the Wittenoom and Mt. Sylvia formations preserved in drill core ABDP9). We find a progressive decrease in bulk-shale Fe isotope compositions moving up core (as low as δ56Fe = –0.78 ± 0.08‰; 2SD) accompanied by invariant authigenic Tl isotope compositions (average ε205TlA = –2.0 ± 0.6; 2SD) and bulk-shale U isotope compositions (average δ238U = –0.30 ± 0.05‰; 2SD) that are both not appreciably different from crustal rocks or bulk silicate Earth. While there are multiple possible interpretations of the decreasing δ56Fe values, many, to include the most compelling, invoke strictly anaerobic processes. The invariant and near-crustal ε205TlA and δ238U values point even more strongly to this interpretation, requiring reducing to only mildly oxidizing conditions over ten-million-year timescales in the late-Archean. For the atmosphere, our results permit either homogenous and low O2 partial pressures (between 10−6.3 and 10−6 present atmospheric level) or heterogeneous and spatially restricted O2 accumulation nearest the sites of O2 production. For the ocean, our results permit minimal penetration of O2 in marine sediments over large areas of the seafloor, at most sufficient for the burial of Fe oxide minerals but insufficient for the burial of Mn oxide minerals. The persistently low background O2 levels implied by our dataset between ∼2.6 and ∼2.5 Ga contrast with the timeframes immediately before and after, where strong evidence is presented for transient Archean Oxidation Events. Viewed in this broader context, our data support the emerging narrative that Earth’s initial oxygenation was a dynamic process that unfolded in fits-and-starts over many hundreds-of-millions of years.
-
ArticleTechnical comment on "Reexamination of 2.5-Ga 'whiff' of oxygen interval points to anoxic ocean before GOE"(American Association for the Advancement of Science, 2023-03-03) Anbar, Ariel D. ; Buick, Roger ; Gordon, Gwyneth W. ; Johnson, Aleisha C. ; Kendall, Brian ; Lyons, Timothy W. ; Ostrander, Chadlin M. ; Planavsky, Noah J. ; Reinhard, Christopher T. ; Stüeken, Eva E.Many lines of inorganic geochemical evidence suggest transient "whiffs" of environmental oxygenation before the Great Oxidation Event (GOE). Slotznickassert that analyses of paleoredox proxies in the Mount McRae Shale, Western Australia, were misinterpreted and hence that environmental Olevels were persistently negligible before the GOE. We find these arguments logically flawed and factually incomplete.
-
ArticleRecurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran.(Nature Research, 2023-07-03) Zheng, Wang ; Zhou, Anwen ; Sahoo, Swapan K. ; Nolan, Morrison R. ; Ostrander, Chadlin M. ; Sun, Ruoyu ; Anbar, Ariel D. ; Xiao, Shuhai ; Chen, JiubinThe Ediacaran Period (~635–539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.
-
ArticleReconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth(American Association for the Advancement of Science, 2021-09-29) Johnson, Aleisha C. ; Ostrander, Chadlin M. ; Romaniello, Stephen J. ; Reinhard, Christopher T. ; Greaney, Allison T. ; Lyons, Timothy W. ; Anbar, Ariel D.Evidence continues to emerge for the production and low-level accumulation of molecular oxygen (O2) at Earth’s surface before the Great Oxidation Event. Quantifying this early O2 has proven difficult. Here, we use the distribution and isotopic composition of molybdenum in the ancient sedimentary record to quantify Archean Mo cycling, which allows us to calculate lower limits for atmospheric O2 partial pressures (PO2) and O2 production fluxes during the Archean. We consider two end-member scenarios. First, if O2 was evenly distributed throughout the atmosphere, then PO2 > 10–6.9 present atmospheric level was required for large periods of time during the Archean eon. Alternatively, if O2 accumulation was instead spatially restricted (e.g., occurring only near the sites of O2 production), then O2 production fluxes >0.01 Tmol O2/year were required. Archean O2 levels were vanishingly low according to our calculations but substantially above those predicted for an abiotic Earth system.
-
PreprintThallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial( 2017-06) Owens, Jeremy D. ; Nielsen, Sune G. ; Horner, Tristan J. ; Ostrander, Chadlin M. ; Peterson, Larry C.Thallium (Tl) isotopes are a new and potentially powerful paleoredox proxy that may track bottom water oxygen conditions based on the global burial flux of manganese oxides. Thallium has a residence time of ~20 thousand years, which is longer than the ocean mixing time, and it has been inferred that modern oxic seawater is conservative with respect to both concentration and isotopes. Marine sources of Tl have nearly identical isotopic values. Therefore, the Tl sinks, adsorption onto manganese oxides and low temperature oceanic crust alteration (the dominant seawater output), are the primary controls of the seawater isotopic composition. For relatively short-term, ~million years, redox events it is reasonable to assume that the dominant mechanism that alters the Tl isotopic composition of seawater is associated with manganese oxide burial because large variability in low temperature ocean crust alteration is controlled by long-term, multi-million years, average ocean crust production rates. This study presents new Tl isotope data for an open ocean transect in the South Atlantic, and depth transects for two euxinic basins (anoxic and free sulfide in the water column), the Cariaco Basin and Black Sea. The Tl isotopic signature of open ocean seawater in the South Atlantic was found to be homogeneous with ε205Tl = -6.0 ± 0.3 (± 2 SD, n = 41) while oxic waters from Cariaco and the Black Sea are -5.6 and -2.2, respectively. Combined with existing data from the Pacific and Arctic Oceans, our Atlantic data establish the conservatism of Tl isotopes in the global ocean. In contrast, partially- and predominantly-restricted basins reveal Tl isotope differences that vary between open-ocean (-6) and continental material (-2) ε205Tl, scaling with the degree of restriction. Regardless of the differences between basins, Tl is quantitatively removed from their euxinic waters below the chemocline. The burial of Tl in euxinic sediments is estimated to be an order of magnitude less than each of the modern ocean outputs and imparts no isotopic fractionation. Thallium removal into pyrite appears to be associated with a small negative fractionation between -1 and -3 ε205Tl, which renders Tl-depleted waters below the chemocline enriched in isotopically-heavy Tl. Due to the quantitative removal of Tl from euxinic seawater, Tl isotope analyses of the authigenic fraction of underlying euxinic sediments from both the Black Sea and Cariaco Basin capture the Tl isotope value of the oxic portion of their respective water column with no net isotope fractionation. Since the Tl isotope composition of seawater is largely dictated by the relative fraction of Mn-oxide burial versus oceanic crust alteration, we contend that the Tl isotope composition of authigenic Tl in black shales, deposited under euxinic conditions but well-connected to the open ocean, can be utilized to reconstruct the Tl isotope composition of seawater, and thus to reconstruct the global history of Mn-oxide burial.
-
ArticleConstraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)(American Association for the Advancement of Science, 2017-08-09) Ostrander, Chadlin M. ; Owens, Jeremy D. ; Nielsen, Sune G.The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation.