Stumpf Richard P.

No Thumbnail Available
Last Name
Stumpf
First Name
Richard P.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Dynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: satellite observations and numerical modeling
    (Elsevier, 2020-10-26) Li, Yizhen ; Stumpf, Richard P. ; McGillicuddy, Dennis J. ; He, Ruoying
    In July 2009, an unusually intense bloom of the toxic dinoflagellate Alexandrium catenella occurred in the Gulf of Maine. The bloom reached high concentrations (from hundreds of thousands to one million cells L−1) that discolored the water and exceeded normal bloom concentrations by a factor of 1000. Using Medium Resolution Imaging Spectrometer (MERIS) imagery processed to target chlorophyll concentrations (>2 µg L−1), patches of intense A. catenella concentration were identified that were consistent with the highly localized cell concentrations observed from ship surveys. The bloom patches were generally aligned with the edge of coastal waters with high-absorption. Dense bloom patches moved onshore in response to a downwelling event, persisted for approximately one week, then dispersed rapidly over a few days and did not reappear. Coupled physical-biological model simulations showed that wind forcing was an important factor in transporting cells onshore. Upward swimming behavior facilitated the horizontal cell aggregation, increasing the simulated maximum depth-integrated cell concentration by up to a factor of 40. Vertical convergence of cells, due to active swimming of A. catenella from the subsurface to the top layer, could explain the additional 25-fold intensification (25 × 40=1000-fold) needed to reach the bloom concentrations that discolored the water. A model simulation that considered upward swimming overestimated cell concentrations downstream of the intense aggregation. This discrepancy between model and observed concentrations suggested a loss of cells from the water column at a time that corresponded to the start of encystment. These results indicated that the joint effect of upward swimming, horizontal convergence, and wind-driven flow contributed to the red water event, which might have promoted the sexual reproduction event that preceded the encystment process.
  • Preprint
    Categorizing the severity of paralytic shellfish poisoning outbreaks in the Gulf of Maine for forecasting and management
    ( 2013-03) Kleindinst, Judith L. ; Anderson, Donald M. ; McGillicuddy, Dennis J. ; Stumpf, Richard P. ; Fisher, Kathleen M. ; Couture, Darcie A. ; Hickey, J. Michael ; Nash, Christopher
    Development of forecasting systems for harmful algal blooms (HABs) has been a long-standing research and management goal. Significant progress has been made in the Gulf of Maine, where seasonal bloom forecasts are now being issued annually using Alexandrium fundyense cyst abundance maps and a population dynamics model developed for that organism. Thus far these forecasts have used terms such as “significant”, “moderately large” or “moderate” to convey the extent of forecasted paralytic shellfish poisoning (PSP) outbreaks. In this study, historical shellfish harvesting closure data along the coast of the Gulf of Maine were used to derive a series of bloom severity levels that are analogous to those used to define major storms like hurricanes or tornados. Thirty-four years of PSP-related shellfish closure data for Maine, Massachusetts and New Hampshire were collected and mapped to depict the extent of coastline closure in each year. Due to fractal considerations, different methods were explored for measuring length of coastline closed. Ultimately, a simple procedure was developed using arbitrary straight-line segments to represent specific sections of the coastline. This method was consistently applied to each year’s PSP toxicity closure map to calculate the total length of coastline closed. Maps were then clustered together statistically to yield distinct groups of years with similar characteristics. A series of categories or levels was defined (“Level 1: Limited”, “Level 2: Moderate”, and “Level 3: Extensive”) each with an associated range of expected coastline closed, which can now be used instead of vague descriptors in future forecasts. This will provide scientifically consistent and simply defined information to the public as well as resource managers who make decisions on the basis of the forecasts.