Scott
Russell L.
Scott
Russell L.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleCombined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites(Copernicus Publications on behalf of the European Geosciences Union, 2016-05-17) Fu, Congsheng ; Wang, Guiling ; Goulden, Michael L. ; Scott, Russell L. ; Bible, Kenneth ; Cardon, Zoe G.Effects of hydraulic redistribution (HR) on hydrological, biogeochemical, and ecological processes have been demonstrated in the field, but the current generation of standard earth system models does not include a representation of HR. Though recent studies have examined the effect of incorporating HR into land surface models, few (if any) have done cross-site comparisons for contrasting climate regimes and multiple vegetation types via the integration of measurement and modeling. Here, we incorporated the HR scheme of Ryel et al. (2002) into the NCAR Community Land Model Version 4.5 (CLM4.5), and examined the ability of the resulting hybrid model to capture the magnitude of HR flux and/or soil moisture dynamics from which HR can be directly inferred, to assess the impact of HR on land surface water and energy budgets, and to explore how the impact may depend on climate regimes and vegetation conditions. Eight AmeriFlux sites with contrasting climate regimes and multiple vegetation types were studied, including the Wind River Crane site in Washington State, the Santa Rita Mesquite savanna site in southern Arizona, and six sites along the Southern California Climate Gradient. HR flux, evapotranspiration (ET), and soil moisture were properly simulated in the present study, even in the face of various uncertainties. Our cross-ecosystem comparison showed that the timing, magnitude, and direction (upward or downward) of HR vary across ecosystems, and incorporation of HR into CLM4.5 improved the model-measurement matches of evapotranspiration, Bowen ratio, and soil moisture particularly during dry seasons. Our results also reveal that HR has important hydrological impact in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.
-
ArticleRepresentativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites(Elsevier, 2021-02-14) Chu, Housen ; Luo, Xiangzhong ; Ouyang, Zutao ; Chan, W. Stephen ; Dengel, Sigrid ; Biraud, Sebastien ; Torn, Margaret S. ; Metzger, Stefan ; Kumar, Jitendra ; Arain, M. Altaf ; Arkebauer, Tim J. ; Baldocchi, Dennis D. ; Bernacchi, Carl ; Billesbach, Dave ; Black, T. Andrew ; Blanken, Peter D. ; Bohrer, Gil ; Bracho, Rosvel ; Brown, Shannon ; Brunsell, Nathaniel A. ; Chen, Jiquan ; Chen, Xingyuan ; Clark, Kenneth ; Desai, Ankur R. ; Duman, Tomer ; Durden, David J. ; Fares, Silvano ; Forbrich, Inke ; Gamon, John ; Gough, Christopher M. ; Griffis, Timothy ; Helbig, Manuel ; Hollinger, David ; Humphreys, Elyn ; Ikawa, Hiroki ; Iwata, Hiroki ; Ju, Yang ; Knowles, John F. ; Knox, Sara H. ; Kobayashi, Hideki ; Kolb, Thomas ; Law, Beverly ; Lee, Xuhui ; Litvak, Marcy ; Liu, Heping ; Munger, J. William ; Noormets, Asko ; Novick, Kim ; Oberbauer, Steven F. ; Oechel, Walter ; Oikawa, Patty ; Papuga, Shirley A. ; Pendall, Elise ; Prajapati, Prajaya ; Prueger, John ; Quinton, William L. ; Richardson, Andrew D. ; Russell, Eric S. ; Scott, Russell L. ; Starr, Gregory ; Staebler, Ralf ; Stoy, Paul C. ; Stuart-Haëntjens, Ellen ; Sonnentag, Oliver ; Sullivan, Ryan C. ; Suyker, Andy ; Ueyama, Masahito ; Vargas, Rodrigo ; Wood, Jeffrey D. ; Zona, DonatellaLarge datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.