Sharp
Jonathan D.
Sharp
Jonathan D.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleBest practice data standards for discrete chemical oceanographic observations(Frontiers Media, 2022-01-21) Jiang, Li-Qing ; Pierrot, Denis ; Wanninkhof, Rik ; Feely, Richard A. ; Tilbrook, Bronte ; Alin, Simone R. ; Barbero, Leticia ; Byrne, Robert H. ; Carter, Brendan ; Dickson, Andrew G. ; Gattuso, Jean-Pierre ; Greeley, Dana ; Hoppema, Mario ; Humphreys, Matthew P. ; Karstensen, Johannes ; Lange, Nico ; Lauvset, Siv K. ; Lewis, Ernie R. ; Olsen, Are ; Perez, Fiz F. ; Sabine, Christopher ; Sharp, Jonathan D. ; Tanhua, Toste ; Trull, Thomas W. ; Velo, Anton ; Allegra, Andrew J. ; Barker, Paul M. ; Burger, Eugene ; Cai, Wei-Jun ; Chen, Chen-Tung A. ; Cross, Jessica N. ; Garcia, Hernan E. ; Hernandez-Ayon, Jose Martin ; Hu, Xinping ; Kozyr, Alex ; Langdon, Chris ; Lee, Kitack ; Salisbury, Joseph E. ; Wang, Zhaohui Aleck ; Xue, LiangEffective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.
-
ArticleUncertainty sources for measurable ocean carbonate chemistry variables(Association for the Sciences of Limnology and Oceanography (ASLO), 2023-12-14) Carter, Brendan R. ; Sharp, Jonathan D. ; Dickson, Andrew G. ; Alvarez, Marta ; Fong, Michael B. ; Garcia-Ibanez, Maribel I. ; Woosley, Ryan J. ; Takeshita, Yuichiro ; Barbero, Leticia ; Byrne, Robert H. ; Cai, Wei-Jun ; Chierici, Melissa ; Clegg, Simon L. ; Easley, Regina A. ; Fassbender, Andrea J. ; Fleger, Kalla L. ; Li, Xinyu ; Martin-Mayor, Macarena ; Schockman, Katelyn M. ; Wang, Zhaohui AleckThe ocean carbonate system is critical to monitor because it plays a major role in regulating Earth's climate and marine ecosystems. It is monitored using a variety of measurements, and it is commonly understood that all components of seawater carbonate chemistry can be calculated when at least two carbonate system variables are measured. However, several recent studies have highlighted systematic discrepancies between calculated and directly measured carbonate chemistry variables and these discrepancies have large implications for efforts to measure and quantify the changing ocean carbon cycle. Given this, the Ocean Carbonate System Intercomparison Forum (OCSIF) was formed as a working group through the Ocean Carbon and Biogeochemistry program to coordinate and recommend research to quantify and/or reduce uncertainties and disagreements in measurable seawater carbonate system measurements and calculations, identify unknown or overlooked sources of these uncertainties, and provide recommendations for making progress on community efforts despite these uncertainties. With this paper we aim to (1) summarize recent progress toward quantifying and reducing carbonate system uncertainties; (2) advocate for research to further reduce and better quantify carbonate system measurement uncertainties; (3) present a small amount of new data, metadata, and analysis related to uncertainties in carbonate system measurements; and (4) restate and explain the rationales behind several OCSIF recommendations. We focus on open ocean carbonate chemistry, and caution that the considerations we discuss become further complicated in coastal, estuarine, and sedimentary environments.
-
ArticleGlobal surface ocean acidification indicators from 1750 to 2100(American Geophysical Union, 2023-03-23) Jiang, Li-Qing ; Dunne, John ; Carter, Brendan R. ; Tjiputra, Jerry F. ; Terhaar, Jens ; Sharp, Jonathan D. ; Olsen, Are ; Alin, Simone ; Bakker, Dorothee C. E. ; Feely, Richard A. ; Gattuso, Jean-Pierre ; Hogan, Patrick ; Ilyina, Tatiana ; Lange, Nico ; Lauvset, Siv K. ; Lewis, Ernie R. ; Lovato, Tomas ; Palmieri, Julien ; Santana-Falcon, Yeray ; Schwinger, Joerg ; Seferian, Roland ; Strand, Gary ; Swart, Neil ; Tanhua, Toste ; Tsujino, Hiroyuki ; Wanninkhof, Rik ; Watanabe, Michio ; Yamamoto, Akitomo ; Ziehn, TiloAccurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html.