Pons-Branchu Edwige

No Thumbnail Available
Last Name
Pons-Branchu
First Name
Edwige
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-01-10) Dubois-Dauphin, Quentin ; Montagna, Paolo ; Siani, Giuseppe ; Douville, Eric ; Wienberg, Claudia ; Hebbeln, Dierk ; Liu, Zhifei ; Kallel, Nejib ; Dapoigny, Arnaud ; Revel, Marie ; Pons-Branchu, Edwige ; Taviani, Marco ; Colin, Christophe
    We present the neodymium isotopic composition (εNd) of mixed planktonic foraminifera species from a sediment core collected at 622 m water depth in the Balearic Sea, as well as εNd of scleractinian cold-water corals (CWC; Madrepora oculata, Lophelia pertusa) retrieved between 280 and 442 m water depth in the Alboran Sea and at 414 m depth in the southern Sardinian continental margin. The aim is to constrain hydrological variations at intermediate depths in the western Mediterranean Sea during the last 20 kyr. Planktonic (Globigerina bulloides) and benthic (Cibicidoides pachyderma) foraminifera from the Balearic Sea were also analyzed for stable oxygen (δ18O) and carbon (δ13C) isotopes. The foraminiferal and coral εNd values from the Balearic and Alboran seas are comparable over the last  ∼  13 kyr, with mean values of −8.94 ± 0.26 (1σ; n =  24) and −8.91 ± 0.18 (1σ; n =  25), respectively. Before 13 ka BP, the foraminiferal εNd values are slightly lower (−9.28 ± 0.15) and tend to reflect higher mixing between intermediate and deep waters, which are characterized by more unradiogenic εNd values. The slight εNd increase after 13 ka BP is associated with a decoupling in the benthic foraminiferal δ13C composition between intermediate and deeper depths, which started at  ∼  16 ka BP. This suggests an earlier stratification of the water masses and a subsequent reduced contribution of unradiogenic εNd from deep waters. The CWC from the Sardinia Channel show a much larger scatter of εNd values, from −8.66 ± 0.30 to −5.99 ± 0.50, and a lower average (−7.31 ± 0.73; n =  19) compared to the CWC and foraminifera from the Alboran and Balearic seas, indicative of intermediate waters sourced from the Levantine basin. At the time of sapropel S1 deposition (10.2 to 6.4 ka), the εNd values of the Sardinian CWC become more unradiogenic (−8.38 ± 0.47; n =  3 at  ∼  8.7 ka BP), suggesting a significant contribution of intermediate waters originated from the western basin. We propose that western Mediterranean intermediate waters replaced the Levantine Intermediate Water (LIW), and thus there was a strong reduction of the LIW during the mid-sapropel ( ∼  8.7 ka BP). This observation supports a notable change of Mediterranean circulation pattern centered on sapropel S1 that needs further investigation to be confirmed.
  • Article
    Seismic hazards implications of uplifted Pleistocene coral terraces in the Gulf of Aqaba
    (Nature Publishing Group, 2017-02-24) Bosworth, William ; Montagna, Paolo ; Pons-Branchu, Edwige ; Rasul, Najeeb ; Taviani, Marco
    The Gulf of Aqaba transform plate boundary is a source of destructive teleseismic earthquakes. Seismicity is concentrated in the central sub-basin and decreases to both the north and south. Although principally a strike-slip plate boundary, the faulted margins of the Gulf display largely dip-slip extensional movement and accompanying footwall uplift. We have constrained rates of this uplift by measurements of elevated Pleistocene coral terraces. In particular the terrace that formed during the last interglacial (~125 ka) is found discontinuously along the length of the Gulf at elevations of 3 to 26 m. Global sea level was ~7 m higher than today at 125 ka indicating net maximum tectonic uplift of ~19 m with an average rate of ~0.015 cm/yr. Uplift has been greatest adjacent to the central sub-basin and like the seismicity decreases to the north and south. We suggest that the present pattern of a seismically active central region linked to more aseismic areas in the north and south has therefore persisted for at least the past 125 kyr. Consequently the potential for future destructive earthquakes in the central Gulf is greater than in the sub-basins to the north and south.