Viet
Nguyen Trung
Viet
Nguyen Trung
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleReply to comment on “Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea”(John Wiley & Sons, 2013-03-31) Chen, Changsheng ; Lai, Zhigang ; Beardsley, Robert C. ; Xu, Qichun ; Lin, Huichan ; Viet, Nguyen Trung ; Yang, Ding
-
ArticleObservational and model studies of the circulation in the Gulf of Tonkin, South China Sea(John Wiley & Sons, 2013-12-03) Ding, Yang ; Chen, Changsheng ; Beardsley, Robert C. ; Bao, Xianwen ; Shi, Maochong ; Zhang, Yu ; Lai, Zhigang ; Li, Ruixiang ; Lin, Huichan ; Viet, Nguyen TrungMoored current measurements were made at one mooring site in the northern Gulf of Tonkin for about 1 year during 1988–1989. Analyses were performed to examine characteristics and variability of tidal and subtidal flows. Rotary spectra showed two peaks at diurnal and semidiurnal periods, with higher diurnal energy. Complex demodulations of diurnal and semidiurnal tidal currents indicated that the tidal current magnitudes varied significantly with seasons: more energetic in the stratified summer than in the vertically well-mixed winter. The observed subtidal currents were highly correlated with the surface wind in winter but not in summer; challenging the conceptual summertime anticyclonic circulation pattern derived using wind-driven homogenous circulation theory. The computed currents from a global ocean model were in good agreement with the observed currents. Similar to the current observations, the model-computed flow patterns were consistent with the conceptual wind-driven circulation pattern in winter but opposite in summer. Process-oriented experiments suggest that the summertime cyclonic circulation in the northern Gulf of Tonkin forms as a result of the combination of stratified wind-driven circulation and tidal-rectified inflow from Qiongzhou Strait. The interaction between the southwest monsoon and buoyancy-driven flow from Hong River can significantly intensify the cyclonic circulation near the surface, but its contribution to the vertically averaged flow of the cyclonic circulation is limited.
-
ArticleCurrent separation and upwelling over the southeast shelf of Vietnam in the South China Sea(American Geophysical Union, 2012-03-21) Chen, Changsheng ; Lai, Zhigang ; Beardsley, Robert C. ; Xu, Qichun ; Lin, Huichan ; Viet, Nguyen TrungThe high-resolution, unstructured grid Finite-Volume Community Ocean Model (FVCOM) was used to examine the physical mechanisms that cause current separation and upwelling over the southeast shelf of Vietnam in the South China Sea (SCS). Process-oriented experiments suggest that the southwesterly monsoon wind is a key physical mechanism for upwelling in that area but not a prerequisite to cause current separation. With no wind forcing, current separation in summer can occur as a result of the encounter of a southward along-shelf coastal current from the north and northeastward buoyancy-driven and stratified tidal-rectified currents from the southwest. The southward current can be traced upstream to the Hong River in the Gulf of Tonkin. This current is dominated by semigeostrophic dynamics and is mostly confined to the narrow shelf along the northern Vietnamese coast. The northeastward currents are generated by tidal rectification and are intensified by the Mekong River discharge and southwesterly monsoon wind forcing. The dynamics controlling this current are fully nonlinear, with significant contributions from advection and vertical turbulent mixing. Upwelling in the current separation zone can be produced by a spatially uniform constant wind field and can be explained using simple wind-induced Ekman transport theory. This finding differs from previous theory in which the regional dipole wind stress curl is claimed as a key mechanism for current separation and upwelling in this coastal region. Our SCS FVCOM, driven by the wind stress, river discharge, and tides, is capable of reproducing the location and tongue-like offshore distribution of temperature as those seen in satellite-derived sea surface temperature imagery.