Wang
Yi
Wang
Yi
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleReorganized atmospheric circulation during the little ice age leads to rapid Southern California deoxygenation(American Geophysical Union, 2021-07-16) Wang, Yi ; Hendy, IngridThe magnitude of natural oceanic dissolved oxygen (DO) variability remains poorly understood due to the short duration of the observational record. Here we present a high-resolution (4–9 years) reconstruction of the Southern California oxygen minimum zone (OMZ) through the Common Era using redox-sensitive metals. Rapid OMZ intensification on multidecadal timescales reveals greater DO variability than observed in instrumental records. An anomalous interval of intensified OMZ between 1600–1750 CE contradicts the expectation of better-ventilated mid-depth North Pacific during cool climates. Although the influence of low-DO Equatorial Pacific Intermediate Water on the Southern California Margin was likely weaker during this interval, we attribute the observed rapid deoxygenation to reduced North Pacific Intermediate Water (NPIW) ventilation. NPIW ventilation thus appears very sensitive to atmospheric circulation reorganization (e.g., a weakened Siberian High and Aleutian Low). In addition to temperature-induced gas solubility, atmospheric forcing under future anthropogenic influences could amplify OMZ variability.
-
ArticleMarine sedimentary uranium to barium ratios as a potential quantitative proxy for Pleistocene bottom water oxygen concentrations(Elsevier, 2023-02-15) Costa, Kassandra M. ; Nielsen, Sune G. ; Wang, Yi ; Lu, Wanyi ; Hines, Sophia K.V. ; Jacobel, Allison W. ; Oppo, Delia W.Oxygen is essential for marine ecosystems, and it is linked by respiration to carbon storage in the deep ocean. Reconstructing oxygen concentrations in the past has been limited by the absence of quantitative, rather than qualitative, proxies, but several new (semi-) quantitative oxygen proxies have recently been developed. In this study we explore the possibility of adding bulk sedimentary uranium (U) to this list by normalizing it to barium (Ba). First, U/Ba and bottom water oxygen concentrations are compared on a global scale, using a core top database, in pelagic environments greater than 200 m water depth. Then, the relationships between U/Ba and bottom water oxygen are examined on smaller spatial scales: within each ocean basin and regionally within the Eastern Equatorial Pacific, the Arabian Sea, and Western Equatorial Atlantic. At this regional scale, where secondary influences on the behavior of both U and Ba may be more spatially uniform, empirical piecewise linear calibrations are developed and subsequently tested on downcore records. U/Ba-based oxygen reconstructions generally agree with those derived from previously published alkenone preservation and benthic foraminiferal surface porosity records. Several limitations to the utility of U/Ba as a proxy for oxygen have also been identified. The proxy should only be applied in the uppermost sedimentary intervals that contain porewater sulfate to minimize barite diagenesis, and phosphorus contents should be monitored for the potential influence of apatite on uranium content. U/Ba is more successful at recording oxygen concentrations during mean glacial and interglacial periods than during climate transitions, when the timing and amplitude may be more sensitive to burndown and smoothing. Conservative errors on the calibrations result in the greatest utility of U/Ba in regions with relatively high oxygen concentrations (e.g., >50 μmol/kg) and large oxygen variability (±10 s of μmol/kg). Even with these caveats, U/Ba is only one of two quantitative oxygen proxies potentially capable of recording variability above 50 μmol/kg, and further investigation into its functionality in different environmental settings is worthwhile in the endeavor to reconstruct the full marine range of oxygen concentrations in the past. All data are available in Supplementary Data 1 and 2.
-
ArticleGlobal oceanic oxygenation controlled by the Southern Ocean through the last deglaciation(American Association for the Advancement of Science, 2024-01-19) Wang, Yi ; Costa, Kassandra M. ; Lu, Wanyi ; Hines, Sophia K. V. ; Nielsen, Sune G.Ocean dissolved oxygen (DO) can provide insights on how the marine carbon cycle affects global climate change. However, the net global DO change and the controlling mechanisms remain uncertain through the last deglaciation. Here, we present a globally integrated DO reconstruction using thallium isotopes, corroborating lower global DO during the Last Glacial Maximum [19 to 23 thousand years before the present (ka B.P.)] relative to the Holocene. During the deglaciation, we reveal reoxygenation in the Heinrich Stadial 1 (~14.7 to 18 ka B.P.) and the Younger Dryas (11.7 to 12.9 ka B.P.), with deoxygenation during the Bølling-Allerød (12.9 to 14.7 ka B.P.). The deglacial DO changes were decoupled from North Atlantic Deep Water formation rates and imply that Southern Ocean ventilation controlled ocean oxygen. The coherence between global DO and atmospheric CO2 on millennial timescales highlights the Southern Ocean’s role in deglacial atmospheric CO2 rise.