Richlen Mindy L.

No Thumbnail Available
Last Name
Richlen
First Name
Mindy L.
ORCID
0000-0002-1302-9342

Search Results

Now showing 1 - 18 of 18
  • Article
    Impact of sea-ice dynamics on the spatial distribution of diatom resting stages in sediments of the Pacific Arctic region
    (American Geophysical Union, 2021-06-17) Fukai, Yuri ; Matsuno, Kohei ; Fujiwara, Amane ; Suzuki, Koji ; Richlen, Mindy L. ; Fachon, Evangeline ; Anderson, Donald M.
    The Pacific Arctic region is characterized by seasonal sea-ice, the spatial extent and duration of which varies considerably. In this region, diatoms are the dominant phytoplankton group during spring and summer. To facilitate survival during periods that are less favorable for growth, many diatom species produce resting stages that settle to the seafloor and can serve as a potential inoculum for subsequent blooms. Since diatom assemblage composition is closely related to sea-ice dynamics, detailed studies of biophysical interactions are fundamental to understanding the lower trophic levels of ecosystems in the Pacific Arctic. One way to explore this relationship is by comparing the distribution and abundance of diatom resting stages with patterns of sea-ice coverage. In this study, we quantified viable diatom resting stages in sediments collected during summer and autumn 2018 and explored their relationship to sea-ice extent during the previous winter and spring. Diatom assemblages were clearly dependent on the variable timing of the sea-ice retreat and accompanying light conditions. In areas where sea-ice retreated earlier, open-water species such as Chaetoceros spp. and Thalassiosira spp. were abundant. In contrast, proportional abundances of Attheya spp. and pennate diatom species that are commonly observed in sea-ice were higher in areas where diatoms experienced higher light levels and longer day length in/under the sea-ice. This study demonstrates that sea-ice dynamics are an important determinant of diatom species composition and distribution in the Pacific Arctic region.
  • Article
    Marine harmful algal blooms (HABs) in the united states: history, current status and future trends
    (Elsevier, 2021-03-03) Anderson, Donald M. ; Fensin, Elizabeth ; Gobler, Christopher J. ; Hoeglund, Alicia E. ; Hubbard, Katherine A. ; Kulis, David M. ; Landsberg, Jan H. ; Lefebvre, Kathi A. ; Provoost, Pieter ; Richlen, Mindy L. ; Smith, Juliette L. ; Solow, Andrew R. ; Trainer, Vera L.
    Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.
  • Article
    A strategic framework for community engagement in oceans and human health
    (Wiley, 2022-04-14) Carson, Margaret A. ; Doberneck, Diane M. ; Hart, Zac ; Kelsey, Heath ; Pierce, Jennifer Y. ; Porter, Dwayne ; Richlen, Mindy L. ; Schandera, Louisa ; Triezenberg, Heather A.
    Over the past two decades, scientific research on the connections between the health and resilience of marine ecosystems and human health, well-being, and community prosperity has expanded and evolved into a distinct “metadiscipline” known as Oceans and Human Health (OHH), recognized by the scientific community as well as policy makers. OHH goals are diverse and seek to improve public health outcomes, promote sustainable use of aquatic systems and resources, and strengthen community resilience. OHH research has historically included some level of community outreach and partner involvement; however, the increasing disruption of aquatic environments and urgency of public health impacts calls for a more systematic approach to effectively identify and engage with community partners to achieve project goals and outcomes. Herein, we present a strategic framework developed collaboratively by community engagement personnel from the four recently established U.S. Centers for Oceans and Human Health (COHH). This framework supports researchers in defining levels of community engagement and in aligning partners, purpose, activities, and approaches intentionally in their community engagement efforts. Specifically, we describe: (a) a framework for a range of outreach and engagement approaches; (b) the need for identifying partners, purpose, activities, and approaches; and (c) the importance of making intentional alignment among them. Misalignment across these dimensions may lead to wasting time or resources, eroding public trust, or failing to achieve intended outcomes. We illustrate the framework with examples from current COHH case studies and conclude with future directions for strategic community engagement in OHH and other environmental health contexts.
  • Preprint
    Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae)
    ( 2017-01) Gómez, Fernando ; Richlen, Mindy L. ; Anderson, Donald M.
    Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (~200 μm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25–40 μm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove. Phylogenetic analysis based on LSU rDNA sequences revealed that C. strangulatum and C. polykrikoides/C. fulvescens formed two distally related, independent lineages. Based on morphological and phylogenetic analyses, the diagnosis of Cochlodinium is emended and C. miniatum is proposed as synonym of C. strangulatum. The new genus Margalefidinium gen. nov., and new combinations for C. catenatum, C. citron, C. flavum, C. fulvescens and C. polykrikoides are proposed.
  • Article
    Asynchrony of Gambierdiscus spp. abundance and toxicity in the U.S. Virgin Islands: implications for monitoring and management of Ciguatera
    (MDPI, 2021-06-10) Liefer, Justin D. ; Richlen, Mindy L. ; Smith, Tyler B. ; DeBose, Jennifer L. ; Xu, Yixiao ; Anderson, Donald M. ; Robertson, Alison
    Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.
  • Preprint
    Understanding interannual, decadal level variability in paralytic shellfish poisoning toxicity in the Gulf of Maine : the HAB Index
    ( 2013-09) Anderson, Donald M. ; Couture, Darcie A. ; Kleindinst, Judith L. ; Keafer, Bruce A. ; McGillicuddy, Dennis J. ; Martin, Jennifer L. ; Richlen, Mindy L. ; Hickey, J. Michael ; Solow, Andrew R.
    A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978 – 2011). The Maine coastline was divided into two regions - eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index – a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike’s Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the others. This statistical underpinning can guide efforts to identify physical and/or biological mechanisms underlying the patterns revealed by the HAB Index. Although A. fundyense cyst survey data (limited to 9 years) do not span the entire interval of the shellfish toxicity records, this analysis leads us to hypothesize that major changes in the abundance of A. fundyense cysts may be a primary factor contributing to the decadal trends in shellfish toxicity in this region. The HAB Index approach taken here is simple but represents a novel and potentially useful tool for resource managers in many areas of the world subject to toxic HABs.
  • Article
    Harmful algal blooms in the Alaskan Arctic: an emerging threat as the ocean warms
    (Oceanography Society, 2022-04-18) Anderson, Donald M. ; Fachon, Evangeline ; Hubbard, Katherine A. ; Lefebvre, Kathi A. ; Lin, Peigen ; Pickart, Robert S. ; Richlen, Mindy L. ; Sheffield, Gay ; Van Hemert, Caroline
    Harmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands.
  • Article
    Estimating genotypic richness and proportion of identical multi-locus genotypes in aquatic microalgal populations
    (Oxford University Press, 2022-07-16) Sassenhagen, Ingrid ; Erdner, Deana L. ; Lougheed, Bryan C. ; Richlen, Mindy L. ; SjÖqvist, Conny
    The majority of microalgal species reproduce asexually, yet population genetic studies rarely find identical multi-locus genotypes (MLG) in microalgal blooms. Instead, population genetic studies identify large genotypic diversity in most microalgal species. This paradox of frequent asexual reproduction but low number of identical genotypes hampers interpretations of microalgal genotypic diversity. We present a computer model for estimating, for the first time, the number of distinct MLGs by simulating microalgal population composition after defined exponential growth periods. The simulations highlighted the effects of initial genotypic diversity, sample size and intraspecific differences in growth rates on the probability of isolating identical genotypes. We estimated the genotypic richness for five natural microalgal species with available high-resolution population genetic data and monitoring-based growth rates, indicating 500 000 to 2 000 000 distinct genotypes for species with few observed clonal replicates (<5%). Furthermore, our simulations indicated high variability in genotypic richness over time and among microalgal species. Genotypic richness was also strongly impacted by intraspecific variability in growth rates. The probability of finding identical MLGs and sampling a representative fraction of genotypes decreased noticeably with smaller sample sizes, challenging the detection of differences in genotypic diversity with typical isolate numbers in the field.
  • Article
    Influence of environmental variables on Gambierdiscus spp. (Dinophyceae) growth and distribution
    (Public Library of Science, 2016-04-13) Xu, Yixiao ; Richlen, Mindy L. ; Liefer, Justin D. ; Robertson, Alison ; Kulis, David M. ; Smith, Tyler ; Parsons, Michael L. ; Anderson, Donald M.
    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4–5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance.
  • Preprint
    Distribution, abundance and diversity of Gambierdiscus spp. from a ciguatera endemic area in Marakei, Republic of Kiribati
    ( 2014-01) Xu, Yixiao ; Richlen, Mindy L. ; Morton, Steve L. ; Mak, Yim Ling ; Chan, Leo Lai ; Tekiau, Aranteiti ; Anderson, Donald M.
    Ciguatera is a serious seafood poisoning syndrome caused by the consumption of ciguatoxin-contaminated finfish from tropical and subtropical regions. This study examined the community structure of ciguatera-associated dinoflagellates and the distribution pattern, taxonomy and toxicity of Gambierdiscus spp. from a high-risk area of Marakei, Republic of Kiribati. The genera Gambierdiscus, Prorocentrum, Ostreopsis, Amphidinium and Coolia were present, and generally the former three dominated the dinoflagellate assemblage. Among these three, Gambierdiscus was the most abundant dinoflagellate genus observed at three of the four sites sampled, two of which (Sites 1 and 2) were on the northern half of the island and two (Sites 3 and 4) on the southern half. The following patterns of abundance were observed among sites: (1) Average Gambierdiscus spp. abundance at the northern sites exceeded the southern sites by a factor of 19-54; and (2) Gambierdiscus spp. abundance at shallow sites (2-3 m) exceeded deeper sites (10-15 m). The distribution of Gambierdiscus spp. at Marakei corresponded with previously observed patterns of fish toxicity, with fish from southern locations being much less toxic than fish sampled north of the central channel. DNA sequencing identified three Gambierdiscus species (G. carpenteri, G. belizeanus, G. pacificus) and three previously unreported ribotypes (Gambierdiscus sp. type 4, Gambierdiscus sp. type 5, Gambierdiscus sp. type 6) in the samples; Gambierdiscus sp. type 4 may represent a Pacific clade of Gambierdiscus sp. ribotype 1. Toxicity analyses determined that Gambierdiscus sp. type 4 isolates were more toxic than the Gambierdiscus sp. type 5 and G. pacificus isolates, with toxin contents of 2.6-6.0 (mean: 4.3± 1.4), 0.010 and 0.011 fg P-CTX-1 eq cell-1, respectively. Despite low densities of Gambierdiscus spp. observed at Marakei relative to other studies in other parts of the world, the presence of low and moderately toxic populations may be sufficient to render the western coast of Marakei a high-risk area for ciguatera. The long history of toxicity along the western side of Marakei suggests that large-scale oceanographic forcings that regulate the distribution of Gambierdiscus spp. along the western side of Marakei may have remained relatively stable over that time. Chronic as well as acute exposure to ciguatoxins may therefore pose an important human health impact to the residents of Marakei.
  • Preprint
    Distribution of Alexandrium fundyense (Dinophyceae) cysts in Greenland and Iceland, with an emphasis on viability and growth in the Arctic
    ( 2016-04) Richlen, Mindy L. ; Zielinski, Oliver ; Holinde, Lars ; Tillmann, Urban ; Cembella, Allan D. ; Lyu, Yihua ; Anderson, Donald M.
    The bloom-forming dinoflagellate Alexandrium fundyense has been extensively studied due its toxin-producing capabilities and consequent impacts to human health and economies. This study investigated the prevalence of resting cysts of A. fundyense in western Greenland and Iceland to assess the historical presence and magnitude of bloom populations in the region, and to characterize environmental conditions during summer, when bloom development may occur. Analysis of sediments collected from these locations showed that Alexandrium cysts were present at low to moderate densities in most areas surveyed, with highest densities observed in western Iceland. Additionally, laboratory experiments were conducted on clonal cultures established from isolated cysts or vegetative cells from Greenland, Iceland, and the Chukchi Sea (near Alaska) to examine the effects of photoperiod interval and irradiance levels on growth. Growth rates in response to the experimental treatments varied among isolates, but were generally highest under conditions that included both the shortest photoperiod interval (16h:8h light:dark) and higher irradiance levels (~146-366 µmol photons m-2 s-1), followed by growth under an extended photoperiod interval and low irradiance level (~37 µmol photons m-2 s-1). Based on field and laboratory data, we hypothesize that blooms in Greenland are primarily derived from advected Alexandrium populations, as low bottom temperatures and limited light availability would likely preclude in situ bloom development. In contrast, the bays and fjords in Iceland may provide more favorable habitat for germling cell survival and growth, and therefore may support indigenous, self-seeding blooms.
  • Article
    Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic
    (National Academy of Sciences, 2021-10-04) Anderson, Donald M. ; Fachon, Evangeline ; Pickart, Robert S. ; Lin, Peigen ; Fischer, Alexis D. ; Richlen, Mindy L. ; Uva, Victoria ; Brosnahan, Michael L. ; McRaven, Leah T. ; Bahr, Frank B. ; Lefebvre, Kathi A. ; Grebmeier, Jacqueline M. ; Danielson, Seth L. ; Lyu, Yihua ; Fukai, Yuri
    Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.
  • Preprint
    LSU rDNA based RFLP assays for the routine identification of Gambierdiscus species
    ( 2017-04) Lyu, Yihua ; Richlen, Mindy L. ; Sehein, Taylor R. ; CHINAIN, Mireille ; Adachi, Masao ; Nishimura, Tomohiro ; Xu, Yixiao ; Parsons, Michael L. ; Smith, Tyler B. ; Zheng, Tianling ; Anderson, Donald M.
    Gambierdiscus is a genus of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit ribosomal RNA gene (rDNA) that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.
  • Article
    Extensive genetic diversity and rapid population differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA
    (John Wiley & Sons, 2012-09-13) Richlen, Mindy L. ; Erdner, Deana L. ; McCauley, Linda A. R. ; Libera, Katie ; Anderson, Donald M.
    In Massachusetts, paralytic shellfish poisoning (PSP) is annually recurrent along the coastline, including within several small embayments on Cape Cod. One such system, the Nauset Marsh System (NMS), supports extensive marshes and a thriving shellfishing industry. Over the last decade, PSP in the NMS has grown significantly worse; however, the origins and dynamics of the toxic Alexandrium fundyense (Balech) populations that bloom within the NMS are not well known. This study examined a collection of 412 strains isolated from the NMS and the Gulf of Maine (GOM) in 2006–2007 to investigate the genetic characteristics of localized blooms and assess connectivity with coastal populations. Comparisons of genetic differentiation showed that A. fundyense blooms in the NMS exhibited extensive clonal diversity and were genetically distinct from populations in the GOM. In both project years, genetic differentiation was observed among temporal samples collected from the NMS, sometimes occurring on the order of approximately 7 days. The underlying reasons for temporal differentiation are unknown, but may be due, in part, to life-cycle characteristics unique to the populations in shallow embayments, or possibly driven by selection from parasitism and zooplankton grazing; these results highlight the need to investigate the role of selective forces in the genetic dynamics of bloom populations. The small geographic scale and limited connectivity of NMS salt ponds provide a novel system for investigating regulators of blooms, as well as the influence of selective forces on population structure, all of which are otherwise difficult or impossible to study in the adjacent open-coastal waters or within larger estuaries.
  • Article
    Spatiotemporal transitions in Pseudo-nitzschia species assemblages and domoic acid along the Alaska coast
    (Public Library of Science, 2023-03-22) Hubbard, Katherine A. ; Villac, Maria Célia ; Chadwick, Christina ; DeSmidt, Alexandra A. ; Flewelling, Leanne ; Granholm, April ; Joseph, Molly ; Wood, Taylor ; Fachon, Evangeline ; Brosnahan, Michael L. ; Richlen, Mindy ; Pathare, Mrunmayee ; Stockwell, Dean ; Lin, Peigen ; Bouchard, Josée N. ; Pickart, Robert ; Anderson, Donald M.
    The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts (P. arctica, P. delicatissima, P. granii, P. obtusa, P. pungens, and two genotypes of P. seriata), and one represented Fragilariopsis oceanica. During summer, particulate DA (pDA; 4.0 to 130.0 ng L-1) was observed in the Bering Strait and Chukchi Sea where P. obtusa was prevalent. In fall, pDA (3.3 to 111.8 ng L-1) occurred along the Beaufort Sea shelf coincident with one P. seriata genotype, and south of the Bering Strait in association with the other P. seriata genotype. Taxa were correlated with latitude, longitude, temperature, salinity, pDA, and/or chlorophyll a, and each had a distinct distribution pattern. The observation of DA in association with different species, seasons, geographic regions, and water masses underscores the significant risk of Amnesic Shellfish Poisoning (ASP) and DA-poisoning in Alaska waters.
  • Article
    Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense
    (Public Library of Science, 2011-07-29) Erdner, Deana L. ; Richlen, Mindy L. ; McCauley, Linda A. R. ; Anderson, Donald M.
    Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.
  • Article
    Microbial community structure and associations during a marine dinoflagellate bloom
    (Frontiers Media, 2018-06-06) Zhou, Jin ; Richlen, Mindy L. ; Sehein, Taylor R. ; Kulis, David M. ; Anderson, Donald M. ; Cai, Zhonghua
    Interactions between microorganisms and algae during bloom events significantly impacts their physiology, alters ambient chemistry, and shapes ecosystem diversity. The potential role these interactions have in bloom development and decline are also of particular interest given the ecosystem impacts of algal blooms. We hypothesized that microbial community structure and succession is linked to specific bloom stages, and reflects complex interactions among taxa comprising the phycosphere environment. This investigation used pyrosequencing and correlation approaches to assess patterns and associations among bacteria, archaea, and microeukaryotes during a spring bloom of the dinoflagellate Alexandrium catenella. Within the bacterial community, Gammaproteobacteria and Bacteroidetes were predominant during the initial bloom stage, while Alphaproteobacteria, Cyanobacteria, and Actinobacteria were the most abundant taxa present during bloom onset and termination. In the archaea biosphere, methanogenic members were present during the early bloom period while the majority of species identified in the late bloom stage were ammonia-oxidizing archaea and Halobacteriales. Dinoflagellates were the major eukaryotic group present during most stages of the bloom, whereas a mixed assemblage comprising diatoms, green-algae, rotifera, and other microzooplankton were present during bloom termination. Temperature and salinity were key environmental factors associated with changes in bacterial and archaeal community structure, respectively, whereas inorganic nitrogen and inorganic phosphate were associated with eukaryotic variation. The relative contribution of environmental parameters measured during the bloom to variability among samples was 35.3%. Interaction analysis showed that Maxillopoda, Spirotrichea, Dinoflagellata, and Halobacteria were keystone taxa within the positive-correlation network, while Halobacteria, Dictyochophyceae, Mamiellophyceae, and Gammaproteobacteria were the main contributors to the negative-correlation network. The positive and negative relationships were the primary drivers of mutualist and competitive interactions that impacted algal bloom fate, respectively. Functional predictions showed that blooms enhance microbial carbohydrate and energy metabolism, and alter the sulfur cycle. Our results suggest that microbial community structure is strongly linked to bloom progression, although specific drivers of community interactions and responses are not well understood. The importance of considering biotic interactions (e.g., competition, symbiosis, and predation) when investigating the link between microbial ecological behavior and an algal bloom’s trajectory is also highlighted.
  • Working Paper
    Harmful Algal Research & Response: A National Environmental Science Strategy (HARRNESS), 2024-2034
    (Woods Hole Oceanographic Institution, 2024-08-01) Anderson, Donald M. ; Backer, Lorraine C. ; Bouma-Gregson, Keith ; Bowers, Holly A. ; Bricelj, V. Monica ; D’Anglada, Lesley ; Deeds, Jonathan ; Dortch, Quay ; Doucette, Gregory J. ; Graham, Jennifer ; Howard, Meredith ; Kirkpatrick, Barbara ; Kudela, Raphael M. ; Lefebvre, Kathi A. ; Moore, Stephanie K. ; Parsons, Michael L. ; Pokrzywinski, Kaytee ; Ramsdell, John S. ; Raymond, Heather ; Richlen, Mindy L. ; Roberts, Virginia A. ; Smith, Jayme ; Smith, Juliette L. ; Stauffer, Beth ; Suddleson, Marc ; Tester, Patricia A. ; Whitehead, Christopher
    Harmful and toxic algal blooms (HABs) are a well-established and severe threat to human health, economies, and marine and freshwater ecosystems on all coasts of the United States and its inland waters. HABs can comprise microalgae, cyanobacteria, and macroalgae (seaweeds). Their impacts, intensity, and geographic range have increased over past decades due to both human-induced and natural changes. In this report, HABs refers to both marine algal and freshwater cyanobacterial events. This Harmful Algal Research and Response: A National Environmental Science Strategy (HARRNESS) 2024-2034 plan builds on major accomplishments from past efforts, provides a state of the science update since the previous decadal HARRNESS plan (2005-2015), identifies key information gaps, and presents forward-thinking solutions. Major achievements on many fronts since the last HARRNESS are detailed in this report. They include improved understanding of bloom dynamics of large-scale regional HABs such as those of Pseudo-nitzschia on the west coast, Alexandrium on the east coast, Karenia brevis on the west Florida shelf, and Microcystis in Lake Erie, and advances in HAB sensor technology, allowing deployment on fixed and mobile platforms for long-term, continuous, remote HAB cell and toxin observations. New HABs and impacts have emerged. Freshwater HABs now occur in many inland waterways and their public health impacts through drinking and recreational water contamination have been characterized and new monitoring efforts have been initiated. Freshwater HAB toxins are finding their way into marine environments and contaminating seafood with unknown consequences. Blooms of Dinophysis spp., which can cause diarrhetic shellfish poisoning, have appeared around the US coast, but the causes are not understood. Similarly, blooms of fish- and shellfish-killing HABs are occurring in many regions and are especially threatening to aquaculture. The science, management, and decision-making necessary to manage the threat of HABs continue to involve a multidisciplinary group of scientists, managers, and agencies at various levels. The initial HARRNESS framework and the resulting National HAB Committee (NHC) have proven effective means to coordinate the academic, management, and stakeholder communities interested in national HAB issues and provide these entities with a collective voice, in part through this updated HARRNESS report. Congress and the Executive Branch have supported most of the advances achieved under HARRNESS (2005-2015) and continue to make HABs a priority. Congress has reauthorized the Harmful Algal Bloom and Hypoxia Research and Control Act (HABHRCA) multiple times and continues to authorize the National Oceanic and Atmospheric Administration (NOAA) to fund and conduct HAB research and response, has given new roles to the US Environmental Protection Agency (EPA), and required an Interagency Working Group on HABHRCA (IWG HABHRCA). These efforts have been instrumental in coordinating HAB responses by federal and state agencies. Initial appropriations for NOAA HAB research and response decreased after 2005, but have increased substantially in the last few years, leading to many advances in HAB management in marine coastal and Great Lakes regions. With no specific funding for HABs, the US EPA has provided funding to states through existing laws, such as the Clean Water Act, Safe Drinking Water Act, and to members of the Great Lakes Interagency Task Force through the Great Lakes Restoration Initiative, to assist states and tribes in addressing issues related to HAB toxins and hypoxia. The US EPA has also worked towards fulfilling its mandate by providing tools and resources to states, territories, and local governments to help manage HABs and cyanotoxins, to effectively communicate the risks of cyanotoxins and to assist public water systems and water managers to manage HABs. These tools and resources include documents to assist with adopting recommended recreational criteria and/or swimming advisories, recommendations for public water systems to choose to apply health advisories for cyanotoxins, risk communication templates, videos and toolkits, monitoring guidance, and drinking water treatment optimization documents. Beginning in 2018, Congress has directed the U.S. Army Corps of Engineers (USACE) to develop a HAB research initiative to deliver scalable HAB prevention, detection, and management technologies intended to reduce the frequency and severity of HAB impacts to our Nation’s freshwater resources. Since the initial HARRNESS report, other federal agencies have become increasingly engaged in addressing HABs, a trend likely to continue given the evolution of regulations(e.g., US EPA drinking water health advisories and recreational water quality criteria for two cyanotoxins), and new understanding of risks associated with freshwater HABs. The NSF/NIEHS Oceans and Human Health Program has contributed substantially to our understanding of HABs. The US Geological Survey, Centers for Disease Control and Prevention, and the National Aeronautics Space Administration also contribute to HAB-related activities. In the preparation of this report, input was sought early on from a wide range of stakeholders, including participants from academia, industry, and government. The aim of this interdisciplinary effort is to provide summary information that will guide future research and management of HABs and inform policy development at the agency and congressional levels. As a result of this information gathering effort, four major HAB focus/programmatic areas were identified: 1) Observing systems, modeling, and forecasting; 2) Detection and ecological impacts, including genetics and bloom ecology; 3) HAB management including prevention, control, and mitigation, and 4) Human dimensions, including public health, socio-economics, outreach, and education. Focus groups were tasked with addressing a) our current understanding based on advances since HARRNESS 2005-2015, b) identification of critical information gaps and opportunities, and c) proposed recommendations for the future. The vision statement for HARRNESS 2024-2034 has been updated, as follows: “Over the next decade, in the context of global climate change projections, HARRNESS will define the magnitude, scope, and diversity of the HAB problem in US marine, brackish and freshwaters; strengthen coordination among agencies, stakeholders, and partners; advance the development of effective research and management solutions; and build resilience to address the broad range of US HAB problems impacting vulnerable communities and ecosystems.” This will guide federal, state, local and tribal agencies and nations, researchers, industry, and other organizations over the next decade to collectively work to address HAB problems in the United States.