Harrison John A.

No Thumbnail Available
Last Name
Harrison
First Name
John A.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Preprint
    Ocean urea fertilization for carbon credits poses high ecological risks
    ( 2008) Glibert, Patricia M. ; Azanza, Rhodora ; Burford, Michele ; Furuya, Ken ; Abal, Eva ; Al-Azri, Adnan ; Al-Yamani, Faiza ; Andersen, Per ; Anderson, Donald M. ; Beardall, John ; Berg, Gry M. ; Brand, Larry E. ; Bronk, Deborah ; Brookes, Justin ; Burkholder, JoAnn M. ; Cembella, Allan D. ; Cochlan, William P. ; Collier, Jackie L. ; Collos, Yves ; Diaz, Robert ; Doblin, Martina ; Drennen, Thomas ; Dyhrman, Sonya T. ; Fukuyo, Yasuwo ; Furnas, Miles ; Galloway, James ; Graneli, Edna ; Ha, Dao Viet ; Hallegraeff, Gustaaf M. ; Harrison, John A. ; Harrison, Paul J. ; Heil, Cynthia A. ; Heimann, Kirsten ; Howarth, Robert W. ; Jauzein, Cecile ; Kana, Austin A. ; Kana, Todd M. ; Kim, Hakgyoon ; Kudela, Raphael M. ; Legrand, Catherine ; Mallin, Michael ; Mulholland, Margaret R. ; Murray, Shauna A. ; O’Neil, Judith ; Pitcher, Grant C. ; Qi, Yuzao ; Rabalais, Nancy ; Raine, Robin ; Seitzinger, Sybil P. ; Salomon, Paulo S. ; Solomon, Caroline ; Stoecker, Diane K. ; Usup, Gires ; Wilson, Joanne ; Yin, Kedong ; Zhou, Mingjiang ; Zhu, Mingyuan
    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.
  • Article
    Denitrification across landscapes and waterscapes : a synthesis
    (Ecological Society of America, 2006-12) Seitzinger, Sybil P. ; Harrison, John A. ; Bohlke, John K. ; Bouwman, A. F. ; Lowrance, R. Richard ; Peterson, Bruce J. ; Tobias, Craig R. ; Van Drecht, G.
    Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled. In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves. Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much denitrification at the watershed scale, per-area denitrification rates in soils and groundwater (kg N·km−2·yr−1) are, on average, approximately one-tenth the per-area rates of denitrification in lakes, rivers, estuaries, continental shelves, or OMZs. A number of potential approaches to increase denitrification on the landscape, and thus decrease N export to sensitive coastal systems exist. However, these have not generally been widely tested for their effectiveness at scales required to significantly reduce N export at the whole watershed scale.
  • Preprint
    The regional and global significance of nitrogen removal in lakes and reservoirs
    ( 2008-06-25) Harrison, John A. ; Maranger, Roxane J. ; Alexander, Richard B. ; Giblin, Anne E. ; Jacinthe, Pierre-Andre ; Mayorga, Emilio ; Seitzinger, Sybil P. ; Sobota, Daniel J. ; Wollheim, Wilfred M.
    Human activities have greatly increased the transport of biologically available N through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N yr-1 from watersheds globally. Small lakes (< 50 km2) were critical in the analysis, retaining almost half (9.3 Tg N yr-1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain approximately 33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area : lake or reservoir surface area), higher apparent settling velocities for N, and greater N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale.
  • Article
    Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach
    (American Geophysical Union, 2008-06-20) Wollheim, Wilfred M. ; Vorosmarty, Charles J. ; Bouwman, A. F. ; Green, Pamela ; Harrison, John A. ; Linder, Ernst ; Peterson, Bruce J. ; Seitzinger, Sybil P. ; Syvitski, James P. M.
    We explored the role of aquatic systems in the global N cycle using a spatially distributed, within-basin, aquatic nitrogen (N) removal model, implemented within the Framework for Aquatic Modeling in the Earth System (FrAMES-N). The model predicts mean annual total N (TN) removal by small rivers (with drainage areas from 2.6–1000 km2), large rivers, lakes, and reservoirs, using a 30′ latitude × longitude river network to route and process material from continental source areas to the coastal zone. Mean annual aquatic TN removal (for the mid-1990s time period) is determined by the distributions of aquatic TN inputs, mean annual hydrological characteristics, and biological activity. Model-predicted TN concentrations at basin mouths corresponded well with observations (median relative error = −12%, interquartile range of relative error = 85%), an improvement over assumptions of uniform aquatic removal across basins. Removal by aquatic systems globally accounted for 14% of total N inputs to continental surfaces, but represented 53% of inputs to aquatic systems. Integrated aquatic removal was similar in small rivers (16.5% of inputs), large rivers (13.6%), and lakes (15.2%), while large reservoirs were less important (5.2%). Bias related to runoff suggests improvements are needed in nonpoint N input estimates and/or aquatic biological activity. The within-basin approach represented by FrAMES-N will improve understanding of the freshwater nutrient flux response to anthropogenic change at global scales.