Arrington Eleanor C.

No Thumbnail Available
Last Name
Arrington
First Name
Eleanor C.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Production of two highly abundant 2-methyl-branched fatty acids by blooms of the globally significant marine cyanobacteria Trichodesmium erythraeum
    (American Chemical Society, 2021-08-26) Gosselin, Kelsey M. ; Nelson, Robert K. ; Spivak, Amanda C. ; Sylva, Sean P. ; Van Mooy, Benjamin A. S. ; Aeppli, Christoph ; Sharpless, Charles M. ; O’Neil, Gregory W. ; Arrington, Eleanor C. ; Reddy, Christopher M. ; Valentine, David L.
    The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.
  • Article
    Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability
    (John Wiley & Sons, 2016-10-13) Weinstein, Alexander ; Navarrete, Luis ; Ruppel, Carolyn D. ; Weber, Thomas C. ; Leonte, Mihai ; Kellermann, Matthias Y. ; Arrington, Eleanor C. ; Valentine, David L. ; Scranton, Mary I. ; Kessler, John D.
    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6–24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.