Strasser
Carly A.
Strasser
Carly A.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ThesisMetapopulation dynamics of the softshell clam, Mya arenaria(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2008-06) Strasser, Carly A.In this dissertation, I explored metapopulation dynamics and population connectivity, with a focus on the softshell clam, Mya arenaria. I first worked towards developing a method for using elemental signatures retained in the larval shell as a tag of natal habitat. I designed and implemented an experiment to determine whether existing methods commonly used for fishes would be applicable to bivalves. I found that the instrumentation and setup I used were not able to isolate and measure the first larval shell of M. arenaria. In concert with developing this method for bivalves, I reared larval M. arenaria in the laboratory under controlled conditions to understand the environmental and biological factors that may influence elemental signatures in shell. My results show that growth rate and age have significant effects on juvenile shell composition, and that temperature and salinity affect larval and juvenile shell composition in variable ways depending on the element evaluated. I also examined the regional patterns of diversity over the current distribution of M. arenaria using the mitochondrial gene, cytochrome oxidase I (COI). I found minimal variability across all populations sampled, suggesting a recent population expansion in the Northwest Atlantic. Finally, I employed theoretical approaches to understand patch dynamics in a two-patch metapopulation when one patch is of high quality and the other low quality. I developed a matrix metapopulation model and compared growth rate elasticity to patch parameters under variable migration scenarios. I then expanded the model to include stochastic disturbance. I found that in many cases, the spatial distribution of individuals within the metapopulation affects whether growth rate is most elastic to parameters in the good or bad patch.
-
ArticleTemperature and salinity effects on elemental uptake in the shells of larval and juvenile softshell clams Mya arenaria(Inter-Research, 2008-10-28) Strasser, Carly A. ; Mullineaux, Lauren S. ; Thorrold, Simon R.The chemical composition of biogenic carbonate has great potential to serve as a natural tag in studies of marine population connectivity. Yet the degree to which carbonate chemistry reflects ambient water composition may be influenced by environmental parameters, physiology, and uptake kinetics. We explored the effects of temperature and salinity on the uptake of elements into shells of larval and juvenile softshell clams Mya arenaria. Clams were reared under controlled conditions using combinations of temperatures (15, 20, and 24°C) and salinities (22 and 30‰) commonly encountered in their natural habitat. We analyzed the ratios of a suite of elements (Mg, Mn, Sr, Ba and Pb) to Ca in seawater and shells using solution-based inductively coupled plasma-mass spectrometry (ICP-MS). Elemental ratios were translated into discrimination coefficients (Delement) to account for water chemistry variability among treatments. For larval shell, we found that DMn was lower in the low-temperature treatment than at higher temperatures, had mixed results for correlations with salinity, and exhibited an interactive effect between salinity and temperature. We also found that DBa of larval shell was higher in the 15°C treatment than at the other 2 temperatures. In juvenile shell, we found a temperature effect for DMn, however the exact relationship was unclear because DMn was higher in the mid-temperature treatment than either the low- or high-temperature treatments. DSr was negatively correlated with salinity in juveniles, with evidence of an interactive effect for temperature and salinity. DBa and DPb were both higher in juveniles in the low-temperature treatment than in the 2 higher temperatures. When discrimination coefficients significantly differed based on ANOVA, we used post hoc comparisons to further explore the effects of temperature and salinity. Correlation analyses showed that uptake differed significantly between larval and juvenile M. arenaria shell for all elements, with no predictable relationship in shell uptake between the 2 stages except for DBa. All of the elements examined in this study have the potential to be useful in tagging studies where geographic variability in temperature, salinity or elemental concentrations exists, although caution should be used to ensure any biological interactions with these variables are accounted for in data interpretation.
-
PreprintLimited genetic variation and structure in softshell clams (Mya arenaria) across their native and introduced range( 2008-06) Strasser, Carly A. ; Barber, Paul H.To offset declines in commercial landings of the softshell clam, Mya arenaria, resource managers are engaged in extensive stocking of seed clams throughout its range in the northwest Atlantic. Because a mixture of native and introduced stocks can disrupt locally adapted genotypes, we investigated genetic structure in M. arenaria populations across its current distribution to test for patterns of regional differentiation. We sequenced mitochondrial cytochrome oxidase I (COI) for a total of 212 individuals from 12 sites in the northwest Atlantic (NW Atlantic), as well as two introduced sites, the northeast Pacific (NE Pacific) and the North Sea and Europe (NS Europe). Populations exhibited extremely low genetic variation, with one haplotype dominating (65-100%) at all sites sampled. Despite being introduced in the last 150-400 years, both NE Pacific and NS Europe populations had higher diversity measures than those in the NW Atlantic and both contained private haplotypes at frequencies of 10% to 27% consistent with their geographic isolation. While significant genetic structure (FST = 0.159, p<0.001) was observed between NW Atlantic and NS Europe, there was no evidence for genetic structure across the pronounced environmental clines of the NW Atlantic. Reduced genetic diversity in mtDNA combined with previous studies reporting reduced genetic diversity in nuclear markers strongly suggests a recent population expansion in the NW Atlantic, a pattern that may result from the retreat of ice sheets during Pleistocene glacial periods. Lack of genetic diversity and regional genetic differentiation suggests that present management strategies for the commercially important softshell clam are unlikely to have a significant impact on the regional distribution of genetic variation, although the possibility of disrupting locally adapted stocks cannot be excluded.
-
ArticleGrowth rate and age effects on Mya arenaria shell chemistry: Implications for biogeochemical studies(Elsevier B.V., 2008-01-30) Strasser, Carly A. ; Mullineaux, Lauren S. ; Walther, Benjamin D.The chemical composition of bivalve shells can reflect that of their environment, making them useful indicators of climate, pollution, and ecosystem changes. However, biological factors can also influence chemical properties of biogenic carbonate. Understanding how these factors affect chemical incorporation is essential for studies that use elemental chemistry of carbonates as indicators of environmental parameters. This study examined the effects of bivalve shell growth rate and age on the incorporation of elements into juvenile softshell clams, Mya arenaria. Although previous studies have explored the effects of these two biological factors, reports have differed depending on species and environmental conditions. In addition, none of the previous studies have examined growth rate and age in the same species and within the same study. We reared clams in controlled laboratory conditions and used solution-based inductively coupled plasma mass spectrometry (ICP-MS) analysis to explore whether growth rate affects elemental incorporation into shell. Growth rate was negatively correlated with Mg, Mn, and Ba shell concentration, possibly due to increased discrimination ability with size. The relationship between growth rate and Pb and Sr was unresolved. To determine age effects on incorporation, we used laser ablation ICP-MS to measure changes in chemical composition across shells of individual clams. Age affected incorporation of Mn, Sr, and Ba within the juvenile shell, primarily due to significantly different elemental composition of early shell material compared to shell accreted later in life. Variability in shell composition increased closer to the umbo (hinge), which may be the result of methodology or may indicate an increased ability with age to discriminate against ions that are not calcium or carbonate. The effects of age and growth rate on elemental incorporation have the potential to bias data interpretation and should be considered in any biogeochemical study that uses bivalves as environmental indicators.
-
ArticleContributions of high- and low-quality patches to a metapopulation with stochastic disturbance(Springer, 2010-12-31) Strasser, Carly A. ; Neubert, Michael G. ; Caswell, Hal ; Hunter, Christine M.Studies of time-invariant matrix metapopulation models indicate that metapopulation growth rate is usually more sensitive to the vital rates of individuals in high-quality (i.e., good) patches than in low-quality (i.e., bad) patches. This suggests that, given a choice, management efforts should focus on good rather than bad patches. Here, we examine the sensitivity of metapopulation growth rate for a two-patch matrix metapopulation model with and without stochastic disturbance and found cases where managers can more efficiently increase metapopulation growth rate by focusing efforts on the bad patch. In our model, net reproductive rate differs between the two patches so that in the absence of dispersal, one patch is high quality and the other low quality. Disturbance, when present, reduces net reproductive rate with equal frequency and intensity in both patches. The stochastic disturbance model gives qualitatively similar results to the deterministic model. In most cases, metapopulation growth rate was elastic to changes in net reproductive rate of individuals in the good patch than the bad patch. However, when the majority of individuals are located in the bad patch, metapopulation growth rate can be most elastic to net reproductive rate in the bad patch. We expand the model to include two stages and parameterize the patches using data for the softshell clam, Mya arenaria. With a two-stage demographic model, the elasticities of metapopulation growth rate to parameters in the bad patch increase, while elasticities to the same parameters in the good patch decrease. Metapopulation growth rate is most elastic to adult survival in the population of the good patch for all scenarios we examine. If the majority of the metapopulation is located in the bad patch, the elasticity to parameters of that population increase but do not surpass elasticity to parameters in the good patch. This model can be expanded to include additional patches, multiple stages, stochastic dispersal, and complex demography.