Tiedje
James M.
Tiedje
James M.
No Thumbnail Available
3 results
Search Results
Now showing
1 - 3 of 3
-
PreprintLarge-scale comparative phenotypic and genomic analyses reveal ecological preferences of Shewanella species and identify metabolic pathways conserved at the genus level( 2011-04-27) Rodrigues, Jorge L. M. ; Serres, Margrethe H. ; Tiedje, James M.The use of comparative genomics among different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at the time. In this study, we provide a high throughput alternative to this limiting step by coupling comparative genomics to phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed. A number of previously unknown gene products were predicted to be part of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high throughput phenotype analysis provided insights into niche specialization within the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, from the deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N-sources they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects.
-
PreprintComparative systems biology across an evolutionary gradient within the Shewanella genus( 2009-07) Konstantinidis, Konstantinos T. ; Serres, Margrethe H. ; Romine, Margaret F. ; Rodrigues, Jorge L. M. ; Auchtung, Jennifer ; McCue, Lee-Ann ; Lipton, Mary S. ; Obraztsova, Anna Y. ; Giometti, Carol S. ; Nealson, Kenneth H. ; Fredrickson, James K. ; Tiedje, James M.To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of ten closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms when grown under identical conditions were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information towards beginning a systems-level understanding of bacterial species and genera.
-
PreprintMinimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications( 2011-01-04) Yilmaz, Pelin ; Kottmann, Renzo ; Field, Dawn ; Knight, Rob ; Cole, James R. ; Amaral-Zettler, Linda A. ; Gilbert, Jack A. ; Karsch-Mizrachi, Ilene ; Johnston, Anjanette ; Cochrane, Guy R. ; Vaughan, Robert ; Hunter, Christopher ; Park, Joonhong ; Morrison, Norman ; Rocca-Serra, Philippe ; Sterk, Peter ; Arumugam, Manimozhiyan ; Bailey, Mark ; Baumgartner, Laura ; Birren, Bruce W. ; Blaser, Martin J. ; Bonazzi, Vivien ; Booth, Tim ; Bork, Peer ; Bushman, Frederic D. ; Buttigieg, Pier Luigi ; Chain, Patrick S. G. ; Charlson, Emily ; Costello, Elizabeth K. ; Huot-Creasy, Heather ; Dawyndt, Peter ; DeSantis, Todd ; Fierer, Noah ; Fuhrman, Jed A. ; Gallery, Rachel E. ; Gevers, Dirk ; Gibbs, Richard A. ; San Gil, Inigo ; Gonzalez, Antonio ; Gordon, Jeffrey I. ; Guralnick, Robert P. ; Hankeln, Wolfgang ; Highlander, Sarah ; Hugenholtz, Philip ; Jansson, Janet K. ; Kau, Andrew L. ; Kelley, Scott T. ; Kennedy, Jerry ; Knights, Dan ; Koren, Omry ; Kuczynski, Justin ; Kyrpides, Nikos C. ; Larsen, Robert ; Lauber, Christian L. ; Legg, Teresa ; Ley, Ruth E. ; Lozupone, Catherine A. ; Ludwig, Wolfgang ; Lyons, Donna ; Maguire, Eamonn ; Methe, Barbara A. ; Meyer, Folker ; Muegge, Brian ; Nakielny, Sara ; Nelson, Karen E. ; Nemergut, Diana ; Neufeld, Josh D. ; Newbold, Lindsay K. ; Oliver, Anna E. ; Pace, Norman R. ; Palanisamy, Giriprakash ; Peplies, Jorg ; Petrosino, Joseph ; Proctor, Lita ; Pruesse, Elmar ; Quast, Christian ; Raes, Jeroen ; Ratnasingham, Sujeevan ; Ravel, Jacques ; Relman, David A. ; Assunta-Sansone, Susanna ; Schloss, Patrick D. ; Schriml, Lynn M. ; Sinha, Rohini ; Smith, Michelle I. ; Sodergren, Erica ; Spor, Ayme ; Stombaugh, Jesse ; Tiedje, James M. ; Ward, Doyle V. ; Weinstock, George M. ; Wendel, Doug ; White, Owen ; Whiteley, Andrew ; Wilke, Andreas ; Wortman, Jennifer R. ; Yatsunenko, Tanya ; Glockner, Frank OliverHere we present a standard developed by the Genomic Standards Consortium (GSC) to describe marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The “environmental packages” apply to any sequence whose origin is known and can therefore be used in combination with MIMARKS or other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we establish the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity across the Tree of Life as it is currently being documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.