Merrifield
Mark
Merrifield
Mark
No Thumbnail Available
Search Results
Now showing
1 - 7 of 7
-
ArticleObservational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems(Frontiers Media, 2019-10-15) Capotondi, Antonietta ; Jacox, Michael ; Bowler, Chris ; Kavanaugh, Maria T. ; Lehodey, Patrick ; Barrie, Daniel ; Brodie, Stephanie ; Chaffron, Samuel ; Cheng, Wei ; Dias, Daniela F. ; Eveillard, Damien ; Guidi, Lionel ; Iudicone, Daniele ; Lovenduski, Nicole S. ; Nye, Janet A. ; Ortiz, Ivonne ; Pirhalla, Douglas ; Pozo Buil, Mercedes ; Saba, Vincent S. ; Sheridan, Scott ; Siedlecki, Samantha A. ; Subramanian, Aneesh C. ; de Vargas, Colomban ; Di Lorenzo, Emanuele ; Doney, Scott C. ; Hermann, Albert J. ; Joyce, Terrence M. ; Merrifield, Mark ; Miller, Arthur J. ; Not, Fabrice ; Pesant, StephaneMany coastal areas host rich marine ecosystems and are also centers of economic activities, including fishing, shipping and recreation. Due to the socioeconomic and ecological importance of these areas, predicting relevant indicators of the ecosystem state on sub-seasonal to interannual timescales is gaining increasing attention. Depending on the application, forecasts may be sought for variables and indicators spanning physics (e.g., sea level, temperature, currents), chemistry (e.g., nutrients, oxygen, pH), and biology (from viruses to top predators). Many components of the marine ecosystem are known to be influenced by leading modes of climate variability, which provide a physical basis for predictability. However, prediction capabilities remain limited by the lack of a clear understanding of the physical and biological processes involved, as well as by insufficient observations for forecast initialization and verification. The situation is further complicated by the influence of climate change on ocean conditions along coastal areas, including sea level rise, increased stratification, and shoaling of oxygen minimum zones. Observations are thus vital to all aspects of marine forecasting: statistical and/or dynamical model development, forecast initialization, and forecast validation, each of which has different observational requirements, which may be also specific to the study region. Here, we use examples from United States (U.S.) coastal applications to identify and describe the key requirements for an observational network that is needed to facilitate improved process understanding, as well as for sustaining operational ecosystem forecasting. We also describe new holistic observational approaches, e.g., approaches based on acoustics, inspired by Tara Oceans or by landscape ecology, which have the potential to support and expand ecosystem modeling and forecasting activities by bridging global and local observations.
-
Book chapterGlobal Oceans [in “State of the Climate in 2020”](American Meteorological Society, 2021-08-01) Johnson, Gregory C. ; Lumpkin, Rick ; Alin, Simone R. ; Amaya, Dillon J. ; Baringer, Molly O. ; Boyer, Tim ; Brandt, Peter ; Carter, Brendan ; Cetinić, Ivona ; Chambers, Don P. ; Cheng, Lijing ; Collins, Andrew U. ; Cosca, Cathy ; Domingues, Ricardo ; Dong, Shenfu ; Feely, Richard A. ; Frajka-Williams, Eleanor E. ; Franz, Bryan A. ; Gilson, John ; Goni, Gustavo J. ; Hamlington, Benjamin D. ; Herrford, Josefine ; Hu, Zeng-Zhen ; Huang, Boyin ; Ishii, Masayoshi ; Jevrejeva, Svetlana ; Kennedy, John J. ; Kersalé, Marion ; Killick, Rachel E. ; Landschützer, Peter ; Lankhorst, Matthias ; Leuliette, Eric ; Locarnini, Ricardo ; Lyman, John ; Marra, John F. ; Meinen, Christopher S. ; Merrifield, Mark ; Mitchum, Gary ; Moat, Bengamin I. ; Nerem, R. Steven ; Perez, Renellys ; Purkey, Sarah G. ; Reagan, James ; Sanchez-Franks, Alejandra ; Scannell, Hillary A. ; Schmid, Claudia ; Scott, Joel P. ; Siegel, David A. ; Smeed, David A. ; Stackhouse, Paul W. ; Sweet, William V. ; Thompson, Philip R. ; Trinanes, Joaquin ; Volkov, Denis L. ; Wanninkhof, Rik ; Weller, Robert A. ; Wen, Caihong ; Westberry, Toby K. ; Widlansky, Matthew J. ; Wilber, Anne C. ; Yu, Lisan ; Zhang, Huai-MinThis chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record. In this overview we address a few of the highlights, first in haiku, then paragraph form: La Niña arrives, shifts winds, rain, heat, salt, carbon: Pacific—beyond. Global ocean conditions in 2020 reflected a transition from an El Niño in 2018–19 to a La Niña in late 2020. Pacific trade winds strengthened in 2020 relative to 2019, driving anomalously westward Pacific equatorial surface currents. Sea surface temperatures (SSTs), upper ocean heat content, and sea surface height all fell in the eastern tropical Pacific and rose in the western tropical Pacific. Efflux of carbon dioxide from ocean to atmosphere was larger than average across much of the equatorial Pacific, and both chlorophyll-a and phytoplankton carbon concentrations were elevated across the tropical Pacific. Less rain fell and more water evaporated in the western equatorial Pacific, consonant with increased sea surface salinity (SSS) there. SSS may also have increased as a result of anomalously westward surface currents advecting salty water from the east. El Niño–Southern Oscillation conditions have global ramifications that reverberate throughout the report.
-
ArticleUnderstanding of contemporary regional sea-level change and the implications for the future(American Geophysical Union, 2020-04-17) Hamlington, Benjamin D. ; Gardner, Alex S. ; Ivins, Erik ; Lenaerts, Jan T. M. ; Reager, John T. ; Trossman, David S. ; Zaron, Edward D. ; Adhikari, Surendra ; Arendt, Anthony ; Aschwanden, Andy ; Beckley, Brian D. ; Bekaert, David P. S. ; Blewitt, Geoffrey ; Caron, Lambert ; Chambers, Don P. ; Chandanpurkar, Hrishikesh A. ; Christianson, Knut ; Csatho, Beata ; Cullather, Richard I. ; DeConto, Robert M. ; Fasullo, John T. ; Frederikse, Thomas ; Freymueller, Jeffrey T. ; Gilford, Daniel M. ; Girotto, Manuela ; Hammond, William C. ; Hock, Regine ; Holschuh, Nicholas ; Kopp, Robert E. ; Landerer, Felix ; Larour, Eric ; Menemenlis, Dimitris ; Merrifield, Mark ; Mitrovica, Jerry X. ; Nerem, R. Steven ; Nias, Isabel J. ; Nieves, Veronica ; Nowicki, Sophie ; Pangaluru, Kishore ; Piecuch, Christopher G. ; Ray, Richard D. ; Rounce, David R. ; Schlegel, Nicole‐Jeanne ; Seroussi, Helene ; Shirzaei, Manoochehr ; Sweet, William V. ; Velicogna, Isabella ; Vinogradova, Nadya ; Wahl, Thomas ; Wiese, David N. ; Willis, Michael J.Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea‐level observing system, the knowledge of regional sea‐level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea‐level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea‐level change. Here we review the individual processes which lead to sea‐level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea‐level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea‐level observation network—particularly as related to satellite observations—in the improved scientific understanding of the contributors to regional sea‐level change.
-
ArticleEddies, topography, and the abyssal flow by the Kyushu-Palau Ridge near Velasco Reef(The Oceanography Society, 2019-12-11) Andres, Magdalena ; Siegelman, Mika ; Hormann, Verena ; Musgrave, Ruth C. ; Merrifield, Sophia T. ; Rudnick, Daniel L. ; Merrifield, Mark ; Alford, Matthew H. ; Voet, Gunnar ; Wijesekera, Hemantha W. ; MacKinnon, Jennifer A. ; Centurioni, Luca R. ; Nash, Jonathan D. ; Terrill, EricPalau, an island group in the tropical western North Pacific at the southern end of Kyushu-Palau Ridge, sits near the boundary between the westward-flowing North Equatorial Current (NEC) and the eastward-flowing North Equatorial Countercurrent. Combining remote-sensing observations of the sea surface with an unprecedented in situ set of subsurface measurements, we examine the flow near Palau with a particular focus on the abyssal circulation and on the deep expression of mesoscale eddies in the region. We find that the deep currents time-averaged over 10 months are generally very weak north of Palau and not aligned with the NEC in the upper ocean. This weak abyssal flow is punctuated by the passing of mesoscale eddies, evident as sea surface height anomalies, that disrupt the mean flow from the surface to the seafloor. Eddy influence is observed to depths exceeding 4,200 m. These deep-reaching mesoscale eddies typically propagate westward past Palau, and as they do, any associated deep flows must contend with the topography of the Kyushu-Palau Ridge. This interaction leads to vertical structure far below the main thermocline. Observations examined here for one particularly strong and well-sampled eddy suggest that the flow was equivalent barotropic in the far field east and west of the ridge, with a more complicated vertical structure in the immediate vicinity of the ridge by the tip of Velasco Reef.
-
ArticleSeasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments(Elsevier, 2020-02-20) Jacox, Michael ; Alexander, Michael A. ; Siedlecki, Samantha A. ; Chen, Ke ; Kwon, Young-Oh ; Brodie, Stephanie ; Ortiz, Ivonne ; Tommasi, Desiree ; Widlansky, Matthew J. ; Barrie, Daniel ; Capotondi, Antonietta ; Cheng, Wei ; Di Lorenzo, Emanuele ; Edwards, Christopher ; Fiechter, Jerome ; Fratantoni, Paula S. ; Hazen, Elliott L. ; Hermann, Albert J. ; Kumar, Arun ; Miller, Arthur J. ; Pirhalla, Douglas ; Pozo Buil, Mercedes ; Ray, Sulagna ; Sheridan, Scott ; Subramanian, Aneesh C. ; Thompson, Philip ; Thorne, Lesley ; Annamalai, Hariharasubramanian ; Aydin, Kerim ; Bograd, Steven ; Griffis, Roger B. ; Kearney, Kelly ; Kim, Hyemi ; Mariotti, Annarita ; Merrifield, Mark ; Rykaczewski, Ryan R.Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting potential for forecasts to aid in the management of living marine resources and coastal communities. However, the mechanisms underlying forecast skill in marine ecosystems are often poorly understood, and many forecasts, especially for biological variables, rely on empirical statistical relationships developed from historical observations. Here, we review statistical and dynamical marine ecosystem forecasting methods and highlight examples of their application along U.S. coastlines for seasonal-to-interannual (1–24 month) prediction of properties ranging from coastal sea level to marine top predator distributions. We then describe known mechanisms governing marine ecosystem predictability and how they have been used in forecasts to date. These mechanisms include physical atmospheric and oceanic processes, biogeochemical and ecological responses to physical forcing, and intrinsic characteristics of species themselves. In reviewing the state of the knowledge on forecasting techniques and mechanisms underlying marine ecosystem predictability, we aim to facilitate forecast development and uptake by (i) identifying methods and processes that can be exploited for development of skillful regional forecasts, (ii) informing priorities for forecast development and verification, and (iii) improving understanding of conditional forecast skill (i.e., a priori knowledge of whether a forecast is likely to be skillful). While we focus primarily on coastal marine ecosystems surrounding North America (and the U.S. in particular), we detail forecast methods, physical and biological mechanisms, and priority developments that are globally relevant.
-
ArticleWhat caused recent shifts in tropical pacific decadal sea-level trends?(American Geophysical Union, 2019-10-31) Piecuch, Christopher G. ; Thompson, Philip R. ; Ponte, Rui M. ; Merrifield, Mark ; Hamlington, Benjamin D.Satellite altimetry reveals substantial decadal variability in sea level 𝜁 across the tropical Pacific during 1993–2015. An ocean state estimate that faithfully reproduces the observations is used to elucidate the origin of these low-frequency tropical Pacific 𝜁 variations. Analysis of the hydrostatic equation reveals that recent decadal 𝜁 changes in the tropical Pacific are mainly hermosteric in nature, related to changes in upper-ocean heat content. A forcing experiment performed with the numerical model suggests that anomalous wind stress was an important driver of the relevant heat storage and thermosteric variation. Closed budget diagnostics further clarify that the wind-stress-related thermosteric 𝜁 variation resulted from the joint actions of large-scale ocean advection and local surface heat flux, such that advection controlled the budget over shorter, intraseasonal to interannual time scales, and local surface heat flux became increasingly influential at longer decadal periods. In particular, local surface heat flux was important in contributing to a recent reversal of decadal 𝜁 trends in the tropical Pacific. Contributions from local surface heat flux partly reflect damping latent heat flux tied to wind-stress-driven sea-surface-temperature variations.
-
ArticleTowards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level(Frontiers Media, 2019-07-25) Ponte, Rui M. ; Carson, Mark ; Cirano, Mauro ; Domingues, Catia M. ; Jevrejeva, Svetlana ; Marcos, Marta ; Mitchum, Gary ; van de Wal, Roderik S.W. ; Woodworth, Philip L. ; Ablain, Michaël ; Ardhuin, Fabrice ; Ballu, Valerie ; Becker, Mélanie ; Benveniste, Jérôme ; Birol, Florence ; Bradshaw, Elizabeth ; Cazenave, Anny ; De Mey-Frémaux, Pierre ; Durand, Fabien ; Ezer, Tal ; Fu, Lee-Lueng ; Fukumori, Ichiro ; Gordon, Kathy ; Gravelle, Médéric ; Griffies, Stephen M. ; Han, Weiqing ; Hibbert, Angela ; Hughes, Chris W. ; Idier, Deborah ; Kourafalou, Vassiliki H. ; Little, Christopher M. ; Matthews, Andrew ; Melet, Angelique ; Merrifield, Mark ; Meyssignac, Benoit ; Minobe, Shoshiro ; Penduff, Thierry ; Picot, Nicolas ; Piecuch, Christopher G. ; Ray, Richard D. ; Rickards, Lesley ; Santamaría-Gómez, Alvaro ; Stammer, Detlef ; Staneva, Joanna ; Testut, Laurent ; Thompson, Keith ; Thompson, Philip ; Vignudelli, Stefano ; Williams, Joanne ; Williams, Simon D. P. ; Wöppelmann, Guy ; Zanna, Laure ; Zhang, XuebinA major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.