Tupper
George H.
Tupper
George H.
No Thumbnail Available
9 results
Search Results
Now showing
1 - 9 of 9
-
Technical ReportCLIVAR Mode Water Dynamics Experiment (CLIMODE) fall 2006 R/V Oceanus voyage 434 November 16, 2006–December 3, 2006(Woods Hole Oceanographic Institution, 2007-12) Bigorre, Sebastien P. ; Weller, Robert A. ; Lord, Jeffrey ; Lund, John M. ; Palter, Jaime B. ; Tupper, George H.CLIMODE (CLIVAR Mode Water Dynamic Experiment) is a research program designed to understand and quantify the processes responsible for the formation and dissipation of North Atlantic subtropical mode water, also called Eighteen Degree Water (EDW). Among these processes, the amount of buoyancy loss at the ocean-atmosphere interface is still uncertain and needs to be accurately quantified. In November 2006, cruise 434 onboard R/V Oceanus traveled in the region of the separated Gulf Stream and its recirculation, where intense oceanic heat loss to the atmosphere in the winter is believed to trigger the formation of EDW. During this cruise, the surface mooring F that was anchored in the core of the Gulf Stream was replaced by a new one, as well as two subsurface moorings C and D located on the southeastern edge of the stream. Surface drifters, ARGO and bobbers RAFOS floats were deployed, CTD profiles and water samples were also carried out. This array of instruments will permit a characterization of EDW with high spatial and temporal resolutions and accurate in-situ measurements of air-sea fluxes in the EDW formation region. The present report documents this cruise, the methods and locations for the deployments of instruments and some evaluation of the measurements from these instruments.
-
Technical ReportSummary of current meter operations in 1968(Woods Hole Oceanographic Institution, 1969-03) McCullough, James R. ; Tupper, George H.This report describes work done with Geodyne current meters and wind recorders during 1968. Techniques for testing instruments prior to use at sea, instrument performance at sea and instrument changes evolved during the year are discussed.
-
Technical ReportMeteorological and oceanographic data collected during the ASREX 91 field experiment(Woods Hole Oceanographic Institution, 1994-08) Galbraith, Nancy R. ; Gnanadesikan, Anand ; Tupper, George H. ; Way, Bryan S.The 1991 Acoustic Surface Reverberation Experiment (ASREX 91) took place in November and December off the coast of British Columbia. As part of this experiment, three moorings were deployed to characterize the environmental background. The moorings consisted of a meteorological/oceanographic mooring designed to measure surface meteorology, current and temperature in the upper 120 meters, and nondirectional wave parameters and two wave moorings which were instrumented with pitch-roll buoys to characterize the directional wave spectrum. This report presents results from these three moorings. The conditions seen during the experiment were extremely rough, with wind speeds at 3.4m above the water surface reaching a maximum of 22 m/s and wave heights reaching a maximum of over 10 meters. The air-sea flux of heat was strongly cooling, and the mixed layer deepened over the course of the experiment from approximately 40 to approximately 70 meters. Spectra of the temperature showed a strong semidiurnal tidal signal associated with temperature excursions of several degrees C. The velocity signal showed strong inertial oscilations with amplitudes of 30-50 cm/s. Weaker low-frequency and semidiurnal tidal signals were also seen. The waves were very strong with significant wave heights of 5-6 meters persisting for up to 2 weeks at a time. Waves were generally out of the south or the west.
-
Technical ReportThe Northwest Tropical Atlantic Station (NTAS) : NTAS-2 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2002-09) Plueddemann, Albert J. ; Ostrom, William M. ; Galbraith, Nancy R. ; Bouchard, Paul R. ; Tupper, George H. ; Dunn, James M. ; Walsh, M. AlexanderThe Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. Deployment of the first NTAS mooring (NTAS-1) at 14°50′ N, 51°00′ W on 30 March 2001 was documented in a previous report (Plueddemann et al., 2001). This report documents recovery of the NTAS-1 mooring and deployment of the NTAS-2 mooring at the same site. Both moorings used 3-meter discus buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 120 m of the NTAS-1 mooring line, and the upper 150 m of the NTAS-2 mooring line, were outfitted with oceanographic sensors for the measurement of temperature and velocity. The mooring turnaround was done on the NOAA Ship Ronald H. Brown, Cruise RB-02-02, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 2 and 8 March 2002. A SeaBeam bathymetry survey of the site was done first, followed by deployment of the NTAS-2 mooring on 4 March at approximately 14°44.3′ N, 50°56.8′ W in 5043 m of water. A 24-hour intercomparison period followed, after which the NTAS-1 mooring was recovered. This report describes these operations, as well as some of the pre-cruise buoy preparations.
-
Technical ReportThe Northwest Tropical Atlantic Station (NTAS) : NTAS-1 mooring deployment cruise report(Woods Hole Oceanographic Institution, 2001-07) Plueddemann, Albert J. ; Galbraith, Nancy R. ; Ostrom, William M. ; Tupper, George H. ; Handy, Robert E. ; Dunn, James M.A surface mooring outfitted for meteorological and oceanographic measurement was deployed near 14°50'N, 51°00'W in the northwest tropical Atlantic on 30 March 2001. This was the initial deployment of the Northwest Tropical Atlantic Station (NTAS) project for air–sea flux measurement. These observations will be used to investigate air–sea interaction processes related to climate variability. The deployment was done on R/V Oceanus Cruise 365, Leg 5 by the Upper Ocean Processes Group (UOP) of the Woods Hole Oceanographic Institution. The 3-meter discus buoy was outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 120 m of the mooring line was outfitted with oceanographic sensors for the measurement of temperature and velocity. This report describes the initial deployment of the NTAS mooring (NTAS-1), including some of the pre-cruise buoy preparations and post cruise data comparisons.
-
Technical ReportThe Marine light - mixed layer experiment cruise and data report, R/V Endeavor : cruise EN-224, mooring deployment, 27 April-1 May 1991, cruise EN-227, mooring recovery, 5-23 September 1991(Woods Hole Oceanographic Institution, 1993-05) Plueddemann, Albert J. ; Weller, Robert A. ; Dickey, Thomas D. ; Marra, John F. ; Tupper, George H. ; Way, Bryan S. ; Ostrom, William M. ; Bouchard, Paul R. ; Oien, Andrea L. ; Galbraith, Nancy R.The Marine Light - Mixed Layer experiment took place in the sub-Arctic North Atlantic ocean, approximately 275 miles south of Reykjavik, Iceland. The field program included a central surface mooring to document the temporal evolution of physical, biological and optical properties. The surface mooring was deployed at approximately 59°N, 21°W on 29 April 1991 and recovered on 6 September 1991. The Upper Ocean Processes Group of the Woods Hole Oceanographic Institution was responsible for design, preparation, deployment, and recovery of the mooring. The Group's contrbution to the field measurements included four different types of sensors: a meteorological observation package on the surface buoy, a string of 15 temperature sensors along the mooring line, an acoustic Doppler current profiler, and four instruments for measuring mooring tension and accelerations. The observations obtained from the mooring are sufficient to describe the air-sea fluxes and the local physical response to surface forcing. The objective in the analysis phase will be to determine the factors controlling this physical response and to work towards an understanding of the links among physical, biological, and optical processes. This report describes the deployment and recovery of the mooring, the meteorological data, and the subsurface temperature and current data.
-
Technical ReportLow-rate discharge of various electrochemical batteries for use with oceanographic instruments(Woods Hole Oceanographic Institution, 1985-04) Ciesluk, Alfred J. ; Guest, Brian J. ; Marquette, Craig D. ; Tupper, George H.The endurance of self-sustained oceanographic instruments is generally limited to battery energy. Tests were initiated to measure the capacities of several types of electrochemical batteries when discharged at temperatures and rates typical of oceanographic use. Battery systems represented are alkaline-manganese dioxide, mercuric-oxide, and lithium sulphur oxychloride. Results of tests completed so far are presented. A brief overview of those batteries best suited for use with self-sustained oceanographic instruments is included as an appendix.
-
Technical ReportTechnical activities associated with the ZONAL Pacific array(Woods Hole Oceanographic Institution, 1987-12) Tupper, George H.Geographic exploration of the eddy and mean fields in the world's oceans using moored instrumentation was concentrated in the North Atlantic in the 1970s. Initial efforts to obtain zero-order coverage in the North Pacific were begun with an array across the Kuroshio Extension along 152°E with instruments in the water from mid-1980 to mid-1982. An array designed to extend this exploration zonally with long-term moorings east of 152°E at mid-latitudes was first set in the fall of 1983, redeployed in the fall of 1984, and recovered for the final time in late 1985. The array was located along four lines of longitude, 165°E, 175°E, 175°W, and 152°W. Along the three westernmost longitudes, 24 one-year moorings were used, 12 each year, with three current meters per mooring at nominal depths of 150, 650, and 4,000 meters. The eastern longitude, 152°E, was sampled by two additional moorings, each with 3 current meters at the above depths, which were deployed for a two-year period, a first for the Buoy Group. This report addresses the technical activities associated with the 1983-1985 array, referred to hereafter as "ZONAL".
-
ArticleThe Iceland Greenland Seas Project(American Meteorological Society, 2019-09-27) Renfrew, Ian A. ; Pickart, Robert S. ; Vage, Kjetil ; Moore, G. W. K. ; Bracegirde, Thomas J. ; Elvidge, Andrew D. ; Jeansson, Emil ; Lachlan-Cope, Thomas ; McRaven, Leah T. ; Papritz, Lukas ; Reuder, Joachim ; Sodemann, Harald ; Terpstra, Annick ; Waterman, Stephanie N. ; Valdimarsson, Héðinn ; Weiss, Albert ; Almansi, Mattia ; Bahr, Frank B. ; Brakstad, Ailin ; Barrell, Christopher ; Brooke, Jennifer K. ; Brooks, Barbara J. ; Brooks, Ian M. ; Brooks, Malcolm E. ; Bruvik, Erik Magnus ; Duscha, Christiane ; Fer, Ilker ; Golid, H. M. ; Hallerstig, M. ; Hessevik, Idar ; Huang, Jie ; Houghton, Leah A. ; Jonsson, Steingrimur ; Jonassen, Marius ; Jackson, K. ; Kvalsund, K. ; Kolstad, Erik W. ; Konstali, K. ; Kristiansen, Jorn ; Ladkin, Russell ; Lin, Peigen ; Macrander, Andreas ; Mitchell, Alexandra ; Olafsson, H. ; Pacini, Astrid ; Payne, Chris ; Palmason, Bolli ; Perez-Hernandez, M. Dolores ; Peterson, Algot K. ; Petersen, Guðrún N. ; Pisareva, Maria N. ; Pope, James O. ; Seidl, Andrew D. ; Semper, Stefanie ; Sergeev, Denis ; Skjelsvik, Silje ; Søiland, Henrik ; Smith, D. ; Spall, Michael A. ; Spengler, Thomas ; Touzeau, Alexandra ; Tupper, George H. ; Weng, Y. ; Williams, Keith D. ; Yang, Xiaohau ; Zhou, ShenjieThe Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.