Sutherland
Peter
Sutherland
Peter
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleOverview of the Arctic Sea state and boundary layer physics program(American Geophysical Union, 2018-04-16) Thomson, Jim ; Ackley, Stephen ; Girard-Ardhuin, Fanny ; Ardhuin, Fabrice ; Babanin, Alexander ; Boutin, Guillaume ; Brozena, John ; Cheng, Sukun ; Collins, Clarence ; Doble, Martin ; Fairall, Christopher W. ; Guest, Peter ; Gebhardt, Claus ; Gemmrich, Johannes ; Graber, Hans C. ; Holt, Benjamin ; Lehner, Susanne ; Lund, Björn ; Meylan, Michael ; Maksym, Ted ; Montiel, Fabien ; Perrie, Will ; Persson, Ola ; Rainville, Luc ; Rogers, W. Erick ; Shen, Hui ; Shen, Hayley ; Squire, Vernon ; Stammerjohn, Sharon E. ; Stopa, Justin ; Smith, Madison M. ; Sutherland, Peter ; Wadhams, PeterA large collaborative program has studied the coupled air‐ice‐ocean‐wave processes occurring in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of the analyses have focused on using and improving forecast models. Summarizing and synthesizing the results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The dramatic increase in open water extent and duration in the autumn means that large surface waves and significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on the winter ice cover, which in turn affects the melt season the following year.
-
DatasetObservations of turbulence and the geometry and circulation of windrows in a small bay in the St. Lawrence Estuary( 2019-11-07) Zippel, Seth F. ; Maksym, Ted ; Scully, Malcolm E. ; Sutherland, Peter ; Dumont, DanyMeasurements of ocean turbulence, waves, and the geometry and circulation of windrows were made over 5 days in early March in a small bay in the St. Lawrence Estuary. Measurements were made from a small zodiac and from a SWIFT drifter. Two acoustic doppler velocity profilers (ADCPs) were used from the zodiac to measure water velocity and turbulent kinetic energy (TKE) dissipation rates near the surface. The acoustic backscatter from the ADCPs was used in conjunction with a GPS to map the location and spacing of wind aligned rows of bubbles. The SWIFT drifter provided measurements of waves, wind stress, and secondary measurements of TKE dissipation rates. Imagery of the surface was taken with a GoPro camera mounted on the zodiac, and with a DJI MavicPro quadcopter.