Chassignet
Eric P.
Chassignet
Eric P.
No Thumbnail Available
16 results
Search Results
Now showing
1 - 16 of 16
-
ArticleHydraulic adjustment to an obstacle in a rotating channel(Cambridge University Press, 2000-09-08) Pratt, Lawrence J. ; Helfrich, Karl R. ; Chassignet, Eric P.In order to gain insight into the hydraulics of rotating-channel flow, a set of initial-value problems analogous to Long's towing experiments is considered. Specifically, we calculate the adjustment caused by the introduction of a stationary obstacle into a steady, single-layer flow in a rotating channel of infinite length. Using the semigeostrophic approximation and the assumption of uniform potential vorticity, we predict the critical obstacle height above which upstream influence occurs. This height is a function of the initial Froude number, the ratio of the channel width to an appropriately defined Rossby radius of deformation, and a third parameter governing how the initial volume flux in sidewall boundary layers is partitioned. (In all cases, the latter is held to a fixed value specifying zero flow in the right-hand (facing downstream) boundary layer.) The temporal development of the flow according to the full, two-dimensional shallow water equations is calculated numerically, revealing numerous interesting features such as upstream-propagating shocks and separated rarefying intrusions, downstream hydraulic jumps in both depth and stream width, flow separation, and two types of recirculations. The semigeostrophic prediction of the critical obstacle height proves accurate for relatively narrow channels and moderately accurate for wide channels. Significantly, we find that contact with the left-hand wall (facing downstream) is crucial to most of the interesting and important features. For example, no instances are found of hydraulic control of flow that is separated from the left-hand wall at the sill, despite the fact that such states have been predicted by previous semigeostrophic theories. The calculations result in a series of regime diagrams that should be very helpful for investigators who wish to gain insight into rotating, hydraulically driven flow.
-
ArticleGreenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers(John Wiley & Sons, 2016-01-25) Dukhovskoy, Dmitry S. ; Myers, Paul G. ; Platov, Gennady A. ; Timmermans, Mary-Louise ; Curry, Beth ; Proshutinsky, Andrey ; Bamber, Jonathan L. ; Chassignet, Eric P. ; Hu, Xianmin ; Lee, Craig M. ; Somavilla, RaquelAccelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub-Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub-Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub-Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06–0.08 in the sub-Arctic seas in contradiction with the recently observed salinification (by 0.15–0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.
-
ArticleImproving oceanic overflow representation in climate models : the Gravity Current Entrainment Climate Process Team(American Meteorological Society, 2009-05) Legg, Sonya ; Ezer, Tal ; Jackson, Laura ; Briegleb, Bruce P. ; Danabasoglu, Gokhan ; Large, William G. ; Wu, Wanli ; Chang, Yeon ; Ozgokmen, Tamay M. ; Peters, Hartmut ; Xu, Xiaobiao ; Chassignet, Eric P. ; Gordon, Arnold L. ; Griffies, Stephen M. ; Hallberg, Robert ; Price, James F. ; Riemenschneider, Ulrike ; Yang, JiayanOceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
-
ArticleA regional modeling study of the entraining Mediterranean outflow(American Geophysical Union, 2007-12-12) Xu, X. ; Chassignet, Eric P. ; Price, James F. ; Ozgokmen, Tamay M. ; Peters, HartmutWe have evaluated a regional-scale simulation of the Mediterranean outflow by comparison with field data obtained in the 1988 Gulf of Cádiz Expedition. Our ocean model is based upon the Hybrid Coordinate Ocean Model (HYCOM) and includes the Richardson number–dependent entrainment parameterization of Xu et al. (2006). Given realistic topography and sufficient resolution, the model reproduces naturally the major, observed features of the Mediterranean outflow in the Gulf of Cádiz: the downstream evolution of temperature, salinity, and velocity profiles, the mean path and the spreading of the outflow plume, and most importantly, the localized, strong entrainment that has been observed to occur just west of the Strait of Gibraltar. As in all numerical solutions, there is some sensitivity to horizontal and vertical resolution. When the resolution is made coarser, the simulated currents are less vigorous and there is consequently less entrainment. Our Richardson number–dependent entrainment parameterization is therefore not recommended for direct application in coarse-resolution climate models. We have used the high-resolution regional model to investigate the response of the Mediterranean outflow to a change in the freshwater balance over the Mediterranean basin. The results are found in close agreement with the marginal sea boundary condition (MSBC): A more saline and dense Mediterranean deep water generates a significantly greater volume transport of the Mediterranean product water having only very slightly greater salinity.
-
ArticleVariability of the Iceland‐Scotland overflow water transport through the Charlie‐Gibbs fracture zone : results from an eddying simulation and observations(John Wiley & Sons, 2018-08-20) Xu, Xiaobiao ; Bower, Amy S. ; Furey, Heather H. ; Chassignet, Eric P.Observations show that the westward transport of the Iceland‐Scotland overflow water (ISOW) through the Charlie‐Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35‐year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large‐scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid‐Atlantic Ridge, suggesting an out‐of‐phase covarying transport between these two ISOW pathways.
-
ArticleSpreading of Denmark Strait overflow water in the western subpolar North Atlantic : insights from eddy-resolving simulations with a passive tracer(American Meteorological Society, 2015-12) Xu, Xiaobiao ; Rhines, Peter B. ; Chassignet, Eric P. ; Schmitz, William J.The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
-
ArticleOver what area did the oil and gas spread during the 2010 Deepwater Horizon oil spill?(The Oceanography Society, 2016-09) Ozgokmen, Tamay ; Chassignet, Eric P. ; Dawson, Clint N. ; Dukhovskoy, Dmitry S. ; Jacobs, Gregg ; Ledwell, James R. ; Garcia-Pineda, Oscar ; MacDonald, Ian R. ; Morey, Steven L. ; Olascoaga, Maria Josefina ; Poje, Andrew ; Reed, Mark ; Skancke, JørgenThe 2010 Deepwater Horizon (DWH) oil spill in the Gulf of Mexico resulted in the collection of a vast amount of situ and remotely sensed data that can be used to determine the spatiotemporal extent of the oil spill and test advances in oil spill models, verifying their utility for future operational use. This article summarizes observations of hydrocarbon dispersion collected at the surface and at depth and our current understanding of the factors that affect the dispersion, as well as our improved ability to model and predict oil and gas transport. As a direct result of studying the area where oil and gas spread during the DWH oil spill, our forecasting capabilities have been greatly enhanced. State-of-the-art oil spill models now include the ability to simulate the rise of a buoyant plume of oil from sources at the seabed to the surface. A number of efforts have focused on improving our understanding of the influences of the near-surface oceanic layer and the atmospheric boundary layer on oil spill dispersion, including the effects of waves. In the future, oil spill modeling routines will likely be included in Earth system modeling environments, which will link physical models (hydrodynamic, surface wave, and atmospheric) with marine sediment and biogeochemical components.
-
ArticleClimate Process Team on internal wave–driven ocean mixing(American Meteorological Society, 2017-12-01) MacKinnon, Jennifer A. ; Zhao, Zhongxiang ; Whalen, Caitlin B. ; Waterhouse, Amy F. ; Trossman, David S. ; Sun, Oliver M. ; St. Laurent, Louis C. ; Simmons, Harper L. ; Polzin, Kurt L. ; Pinkel, Robert ; Pickering, Andrew I. ; Norton, Nancy J. ; Nash, Jonathan D. ; Musgrave, Ruth C. ; Merchant, Lynne M. ; Melet, Angelique ; Mater, Benjamin D. ; Legg, Sonya ; Large, William G. ; Kunze, Eric ; Klymak, Jody M. ; Jochum, Markus ; Jayne, Steven R. ; Hallberg, Robert ; Griffies, Stephen M. ; Diggs, Stephen ; Danabasoglu, Gokhan ; Chassignet, Eric P. ; Buijsman, Maarten C. ; Bryan, Frank O. ; Briegleb, Bruce P. ; Barna, Andrew ; Arbic, Brian K. ; Ansong, Joseph ; Alford, Matthew H.Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
-
Technical Report2013 program of study : buoyancy-driven flows(Woods Hole Oceanographic Institution, 2014-05) Cenedese, Claudia ; Chassignet, Eric P. ; Smith, Stefan LlewellynThe 2013 Geophysical Fluid Dynamics Summer Study Program theme was Buoyancy- Driven Flows. Professor Paul Linden of the University of Cambridge was the principal lecturer. He ably introduced the topic from simple beginnings to sophisticated models and observations, guiding the audience in the cottage and on the porch through fundamental theory and applications. A number of topics from the lectures resurfaced in the fellows' projects. The first ten chapters of this volume document these lectures, each prepared by pairs of the summer's GFD fellows. Following the principal lecture notes are the written reports of the fellows' own research projects.
-
ArticleCold event in the South Atlantic Bight during summer of 2003 : model simulations and implications(American Geophysical Union, 2007-05-11) Aretxabaleta, Alfredo L. ; Blanton, Brian O. ; Seim, Harvey E. ; Werner, Francisco E. ; Nelson, James R. ; Chassignet, Eric P.A set of model simulations are used to determine the principal forcing mechanisms that resulted in anomalously cold water in the South Atlantic Bight (SAB) in the summer of 2003. Updated mass field and elevation boundary conditions from basin-scale Hybrid Coordinate Ocean Model (HYCOM) simulations are compared to climatological forcing to provide offshore and upstream influences in a one-way nesting sense. Model skill is evaluated by comparing model results with observations of velocity, water level, and surface and bottom temperature. Inclusion of realistic atmospheric forcing, river discharge, and improved model dynamics produced good skill on the inner shelf and midshelf. The intrusion of cold water onto the shelf occurred predominantly along the shelf-break associated with onshore flow in the southern part of the domain north of Cape Canaveral (29° to 31.5°). The atmospheric forcing (anomalously strong and persistent upwelling-favorable winds) was the principal mechanism driving the cold event. Elevated river discharge increased the level of stratification across the inner shelf and midshelf and contributed to additional input of cold water into the shelf. The resulting pool of anomalously cold water constituted more than 50% of the water on the shelf in late July and early August. The excess nutrient flux onto the shelf associated with the upwelling was approximated using published nitrate-temperature proxies, suggesting increased primary production during the summer over most of the SAB shelf.
-
ArticleAssessment of numerical simulations of deep circulation and variability in the Gulf of Mexico using recent observations(American Meteorological Society, 2020-04-08) Morey, Steven L. ; Gopalakrishnan, Ganesh ; Pallás-Sanz, Enric ; Azevedo Correia De Souza, Joao Marcos ; Donohue, Kathleen A. ; Pérez-Brunius, Paula ; Dukhovskoy, Dmitry S. ; Chassignet, Eric P. ; Cornuelle, Bruce D. ; Bower, Amy S. ; Furey, Heather H. ; Hamilton, Peter ; Candela, JulioThree simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (>1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
-
ArticleLagrangian ocean analysis : fundamentals and practices(Elsevier, 2017-11-24) van Sebille, Erik ; Griffies, Stephen M. ; Abernathey, Ryan ; Adams, Thomas P. ; Berloff, Pavel S. ; Biastoch, Arne ; Blanke, Bruno ; Chassignet, Eric P. ; Cheng, Yu ; Cotter, Colin J. ; Deleersnijder, Eric ; Döös, Kristofer ; Drake, Henri F. ; Drijfhout, Sybren ; Gary, Stefan F. ; Heemink, Arnold W. ; Kjellsson, Joakim ; Koszalka, Inga M. ; Lange, Michael ; Lique, Camille ; MacGilchrist, Graeme ; Marsh, Robert ; Mayorga-Adame, Claudia G. ; McAdam, Ronan ; Nencioli, Francesco ; Paris, Claire B. ; Piggott, Matthew D. ; Polton, Jeff ; Rühs, Siren ; Shah, Syed H.A.M. ; Thomas, Matthew D. ; Wang, Jinbo ; Wolfram, Phillip J. ; Zanna, Laure ; Zika, Jan D.Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
-
ArticleSalinification in the South China Sea since late 2012 : a reversal of the freshening since the 1990s(John Wiley & Sons, 2018-03-05) Zeng, Lili ; Chassignet, Eric P. ; Schmitt, Raymond W. ; Xu, Xiaobiao ; Wang, DongxiaoSalinification has occurred in the South China Sea from late 2012 to the present, as shown by satellite Aquarius/Soil Moisture Active Passive data and Argo float data. This salinification follows a 20 year freshening trend that started in 1993. The salinification signal is strongest near the surface and extends downward under the seasonal thermocline to a depth of 150 m. The salinification occurs when the phase of the Pacific Decadal Oscillation switches from negative to positive. Diagnosis of the salinity budget suggests that an increasing net surface freshwater loss and the horizontal salt advection through the Luzon Strait driven by the South China Sea throughflow contributed to this ongoing salinification. In particular, a decrease in precipitation and enhanced Luzon Strait transport dominated the current intense salinification. Of particular interest is whether this salinification will continue until it reaches the previous maximum recorded in 1992.
-
ArticleRole of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic(American Geophysical Union, 2019-04-26) Dukhovskoy, Dmitry S. ; Yashayaev, Igor ; Proshutinsky, Andrey ; Bamber, Jonathan L. ; Bashmachnikov, Igor ; Chassignet, Eric P. ; Lee, Craig M. ; Tedstone, AndrewThe cumulative Greenland freshwater flux anomaly has exceeded 5,000 km3 since the 1990s. The volume of this surplus freshwater is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveals freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50–100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of freshwater have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.
-
ArticleTime scales of the Greenland freshwater anomaly in the subpolar North Atlantic(American Meteorological Society, 2021-10-15) Dukhovskoy, Dmitry S. ; Yashayaev, Igor ; Chassignet, Eric P. ; Myers, Paul G. ; Platov, Gennady A. ; Proshutinsky, AndreyThe impact of increasing Greenland freshwater discharge on the subpolar North Atlantic (SPNA) remains unknown as there are uncertainties associated with the time scales of the Greenland freshwater anomaly (GFWA) in the SPNA. Results from numerical simulations tracking GFWA and an analytical approach are employed to estimate the response time, suggesting that a decadal time scale (13 years) is required for the SPNA to adjust for increasing GFWA. Analytical solutions obtained for a long-lasting increase of freshwater discharge show a non-steady-state response of the SPNA with increasing content of the GFWA. In contrast, solutions for a short-lived pulse of freshwater demonstrate different responses of the SPNA with a rapid increase of freshwater in the domain followed by an exponential decay after the pulse has passed. The derived theoretical relation between time scales shows that residence time scales are time dependent for a non-steady-state case and asymptote the response time scale with time. The residence time of the GFWA deduced from Lagrangian experiments is close to and smaller than the response time, in agreement with the theory. The Lagrangian analysis shows dependence of the residence time on the entrance route of the GFWA and on the depth. The fraction of the GFWA exported through Davis Strait has limited impact on the interior basins, whereas the fraction entering the SPNA from the southwest Greenland shelf spreads into the interior regions. In both cases, the residence time of the GFWA increases with depth demonstrating long persistence of the freshwater anomaly in the subsurface layers.
-
ArticleArctic ice-ocean interactions in an 8-to-2 kilometer resolution global model(Elsevier, 2023-06-12) Fine, Elizabeth C. ; McClean, Julie L. ; Ivanova, Detelina P. ; Craig, Anthony P. ; Wallcraft, Alan J. ; Chassignet, Eric P. ; Hunke, Elizabeth C.In the last decades, the Arctic climate has changed dramatically, with the loss of multiyear sea ice one of the clearest consequences. These changes have occurred on relatively rapid timescales, and both accurate short-term Arctic prediction (e.g., 10 days to three months) and climate projection of future Arctic scenarios present ongoing challenges. Here we describe a representation of the Arctic ocean and sea ice in a ultrahigh resolution simulation in which the horizontal grid mesh reduces from 8 km at the equator to 2 km at the poles (UH8to2) for the years 2017–2020. We find the simulation reproduces observed distributions of seasonal sea-ice thickness and concentration realistically, although concentration is biased low in the spring and summer and low biases in thickness are found in the central and eastern basins in the fall. Volume, fresh water, and heat transports through key passages are realistic, lying within observationally determined ranges. Climatological comparisons reveal that the UH8to2 Atlantic Water is shallower, warmer, and saltier than the World Ocean Atlas 2018 climatology for 2005–2017 in the eastern basin. Our analysis suggests that these biases, combined with a lack of stratification in the upper 100 m of the simulated ocean, contribute to the winter biases in modeled sea ice thickness. This relationship between biases in the sea ice and ocean points to a potential positive feedback within the model, illuminating challenges for long term model predictive power in a changing Arctic climate.