Buesseler
Kenneth O.
Buesseler
Kenneth O.
No Thumbnail Available
Search Results
Now showing
1 - 10 of 10
-
ArticleReview of the analysis of Th-234 in small volume (2-4 L) seawater samples: improvements and recommendations(Springer, 2021-06-24) Clevenger, Samantha J. ; Benitez-Nelson, Claudia R. ; Drysdale, Jessica A. ; Pike, Steven M. ; Puigcorbé, Viena ; Buesseler, Ken O.The short-lived radionuclide 234Th is widely used to study particle scavenging and transport from the upper ocean to deeper waters. This manuscript optimizes, reviews and validates the collection, processing and analyses of total 234Th in seawater and suggests areas of further improvements. The standard 234Th protocol method consists of scavenging 234Th from seawater via a MnO2 precipitate, beta counting, and using chemical recoveries determined by adding 230Th. The revised protocol decreases sample volumes to 2 L, shortens wait times between steps, and simplifies the chemical recovery process, expanding the ability to more rapidly and safely apply the 234Th method.
-
ArticleThe value of scientific research on the ocean's biological carbon pump(Elsevier, 2020-08-01) Jin, Di ; Hoagland, Porter ; Buesseler, Ken O.The ocean's biological carbon pump (BCP) sequesters carbon from the surface to the deep ocean and seabed, constituting one of Earth's most valuable ecosystem services. Significant uncertainty exists surrounding the amounts and rates of organic carbon sequestered in the oceans, however. With improved understanding of BCP sequestration, especially its scale, world policymakers would be positioned to make more informed decisions regarding the mitigation of carbon emissions. Here, an analytical model of the economic effects of global carbon emissions—including scientific uncertainty about BCP sequestration—was developed to estimate the value of marine scientific research concerning sequestration. The discounted net economic benefit of a putative 20-year scientific research program to narrow the range of uncertainty around the amount of carbon sequestered in the ocean is on the order of $0.5 trillion (USD), depending upon the accuracy of predictions, the convexities of climate damage and economic output functions, and the initial range of uncertainty.
-
DatasetCarbon, Nitrogen, biogenic silica, thorium-234, and mass fluxes from upper ocean sediment traps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-26) Estapa, Margaret L. ; Buesseler, Kenneth O. ; Lampitt, RichardCarbon, Nitrogen, biogenic silica, thorium-234, and mass fluxes from upper ocean sediment traps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765835
-
DatasetTPC, PIC, POC, TPN, and Th-234 from in-situ pumps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-26) Buesseler, Kenneth O. ; Estapa, Margaret L.TPC, PIC, POC, TPN, and Th-234 from in-situ pumps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765850
-
DatasetWater column Th-234 activities from 4-liter water samples at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-26) Buesseler, Kenneth O. ; Estapa, Margaret L.Water column Th-234 activities from 4-liter water samples at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765859
-
ArticleMetrics that matter for assessing the ocean biological carbon pump(National Academy of Sciences, 2020-04-06) Buesseler, Ken O. ; Boyd, Philip ; Black, Erin E. ; Siegel, David A.The biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans’ interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation’s Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the “Martin curve.” We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.
-
ArticleHigh-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport processes in the ocean from RemoTe sensing field campaign(University of California Press, 2020-12-10) Buesseler, Ken O. ; Benitez-Nelson, Claudia R. ; Roca-Martí, Montserrat ; Wyatt, Abigale M. ; Resplandy, Laure ; Clevenger, Samantha J. ; Drysdale, Jessica A. ; Estapa, Margaret L. ; Pike, Steven M. ; Umhau, Blaire P.The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program of National Aeronautics and Space Administration focuses on linking remotely sensed properties from satellites to the mechanisms that control the transfer of carbon from surface waters to depth. Here, the naturally occurring radionuclide thorium-234 was used as a tracer of sinking particle flux. More than 950 234Th measurements were made during August–September 2018 at Ocean Station Papa in the northeast Pacific Ocean. High-resolution vertical sampling enabled observations of the spatial and temporal evolution of particle flux in Lagrangian fashion. Thorium-234 profiles were remarkably consistent, with steady-state (SS) 234Th fluxes reaching 1,450 ± 300 dpm m−2 d−1 at 100 m. Nonetheless, 234Th increased by 6%–10% in the upper 60 m during the cruise, leading to consideration of a non-steady-state (NSS) model and/or horizontal transport, with NSS having the largest impact by decreasing SS 234Th fluxes by 30%. Below 100 m, NSS and SS models overlapped. Particulate organic carbon (POC)/234Th ratios decreased with depth in small (1–5 μm) and mid-sized (5–51 μm) particles, while large particle (>51 μm) ratios remained relatively constant, likely influenced by swimmer contamination. Using an average SS and NSS 234Th flux and the POC/234Th ratio of mid-sized particles, we determined a best estimate of POC flux. Maximum POC flux was 5.5 ± 1.7 mmol C m−2 d−1 at 50 m, decreasing by 70% at the base of the primary production zone (117 m). These results support earlier studies that this site is characterized by a modest biological carbon pump, with an export efficiency of 13% ± 5% (POC flux/net primary production at 120 m) and 39% flux attenuation in the subsequent 100 m (POC flux 220 m/POC flux 120m). This work sets the foundation for understanding controls on the biological carbon pump during this EXPORTS campaign.
-
ArticleBiogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa(University of California Press, 2021-06-17) Estapa, Margaret L. ; Buesseler, Ken O. ; Durkin, Colleen A. ; Omand, Melissa M. ; Benitez-Nelson, Claudia R. ; Roca-Martí, Montserrat ; Breves, Elly ; Kelly, Roger P. ; Pike, Steven M.Comprehensive field observations characterizing the biological carbon pump (BCP) provide the foundation needed to constrain mechanistic models of downward particulate organic carbon (POC) flux in the ocean. Sediment traps were deployed three times during the EXport Processes in the Ocean from RemoTe Sensing campaign at Ocean Station Papa in August–September 2018. We propose a new method to correct sediment trap sample contamination by zooplankton “swimmers.” We consider the advantages of polyacrylamide gel collectors to constrain swimmer influence and estimate the magnitude of possible trap biases. Measured sediment trap fluxes of thorium-234 are compared to water column measurements to assess trap performance and estimate the possible magnitude of fluxes by vertically migrating zooplankton that bypassed traps. We found generally low fluxes of sinking POC (1.38 ± 0.77 mmol C m–2 d–1 at 100 m, n = 9) that included high and variable contributions by rare, large particles. Sinking particle sizes generally decreased between 100 and 335 m. Measured 234Th fluxes were smaller than water column 234Th fluxes by a factor of approximately 3. Much of this difference was consistent with trap undersampling of both small (<32 μm) and rare, large particles (>1 mm) and with zooplankton active migrant fluxes. The fraction of net primary production exported below the euphotic zone (0.1% light level; Ez-ratio = 0.10 ± 0.06; ratio uncertainties are propagated from measurements with n = 7–9) was consistent with prior, late summer studies at Station P, as was the fraction of material exported to 100 m below the base of the euphotic zone (T100, 0.55 ± 0.35). While both the Ez-ratio and T100 parameters varied weekly, their product, which we interpret as overall BCP efficiency, was remarkably stable (0.055 ± 0.010), suggesting a tight coupling between production and recycling at Station P.
-
ArticleA visual tour of carbon export by sinking particles(American Geophysical Union, 2021-10-06) Durkin, Colleen A. ; Buesseler, Ken O. ; Cetinić, Ivona ; Estapa, Margaret L. ; Kelly, Roger P. ; Omand, Melissa M.To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
-
ArticleFlux of particulate elements in the North Atlantic Ocean constrained by multiple radionuclides(American Geophysical Union, 2018-11-22) Hayes, Christopher T. ; Black, Erin E. ; Anderson, Robert F. ; Baskaran, Mark ; Buesseler, Ken O. ; Charette, Matthew A. ; Cheng, Hai ; Cochran, J. Kirk ; Edwards, R. Lawrence ; Fitzgerald, Patrick ; Lam, Phoebe J. ; Lu, Yanbin ; Morris, Stephanie O. ; Ohnemus, Daniel C. ; Pavia, Frank ; Stewart, Gillian ; Tang, YiSinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and 232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th ;210Pb:210Po; 228Ra:228Th; and 234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and 232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.