Benitez-Nelson
Claudia R.
Benitez-Nelson
Claudia R.
No Thumbnail Available
24 results
Search Results
Now showing
1 - 20 of 24
-
ArticleReview of the analysis of Th-234 in small volume (2-4 L) seawater samples: improvements and recommendations(Springer, 2021-06-24) Clevenger, Samantha J. ; Benitez-Nelson, Claudia R. ; Drysdale, Jessica A. ; Pike, Steven M. ; Puigcorbé, Viena ; Buesseler, Ken O.The short-lived radionuclide 234Th is widely used to study particle scavenging and transport from the upper ocean to deeper waters. This manuscript optimizes, reviews and validates the collection, processing and analyses of total 234Th in seawater and suggests areas of further improvements. The standard 234Th protocol method consists of scavenging 234Th from seawater via a MnO2 precipitate, beta counting, and using chemical recoveries determined by adding 230Th. The revised protocol decreases sample volumes to 2 L, shortens wait times between steps, and simplifies the chemical recovery process, expanding the ability to more rapidly and safely apply the 234Th method.
-
ArticleIntercalibration studies of short-lived thorium-234 in the water column and marine particles(Association for the Sciences of Limnology and Oceanography, 2012-09) Maiti, Kanchan ; Buesseler, Ken O. ; Pike, Steven M. ; Benitez-Nelson, Claudia R. ; Cai, Pinghe ; Chen, Weifang ; Cochran, Kirk ; Dai, Minhan ; Dehairs, Frank ; Gasser, Beat ; Kelly, Roger P. ; Masqué, Pere ; Miller, Lisa A. ; Miquel, Juan Carlos ; Moran, S. Bradley ; Morris, Paul J. ; Peine, Florian ; Planchon, Frederic ; Renfro, Alisha A. ; Rutgers van der Loeff, Michiel M. ; Santschi, Peter H. ; Turnewitsch, Robert ; Waples, James T. ; Xu, ChenIntercomparision of 234Th measurements in both water and particulate samples was carried out between 15 laboratories worldwide, as a part of GEOTRACES inter-calibration program. Particulate samples from four different stations namely BATS (both shallow and deep) and shelf station (shallow) in Atlantic and SAFE (both shallow and deep) and Santa Barbara station (shallow) in Pacific were used in the effort. Particulate intercalibration results indicate good agreement between all the participating labs with data from all labs falling within the 95% confidence interval around the mean for most instances. Filter type experiments indicate no significant differences in 234Th activities between filter types and pore sizes (0.2-0.8 μm). The only exception are the quartz filters, which are associated with 10% to 20% higher 234Th activities attributed to sorption of dissolved 234Th. Flow rate experiments showed a trend of decreasing 234Th activities with increasing flow rates (2-9 L min-1) for > 51 μm size particles, indicating particle loss during the pumping process. No change in 234Th activities on small particles was observed with increasing flow-rates. 234Th intercalibration results from deep water samples at SAFe station indicate a variability of < 3% amongst labs while dissolved 234Th data from surface water at Santa Barbara Station show a less robust agreement, possibly due to the loss of 234Th from decay and large in-growth corrections as a result of long gap between sample collection and processing.
-
PreprintThorium speciation in seawater( 2005-07) Santschi, Peter H. ; Murray, James W. ; Baskaran, Mark ; Benitez-Nelson, Claudia R. ; Guo, L. D. ; Hung, C.-C. ; Lamborg, Carl H. ; Moran, S. Bradley ; Passow, Uta ; Roy-Barman, MatthieuSince the 1960’s, thorium isotopes occupy a special place in the oceanographer’s toolbox as tracers for determining rates and mechanisms of oceanic scavenging, particle dynamics, and carbon fluxes. Due to their unique and constant production rates from soluble parent nuclides of uranium and radium, their disequilibrium can be used to calculate rates and time scales of sinking particles. In addition, by ratio-ing particulate 234Th (as well, in principle, other Thnuclides) to carbon (and other elements), and linking this ratio to the parent-daughter disequilibrium in the water column, it is possible to calculate fluxes of carbon and other elements. Most of these applications are possible with little knowledge of the dissolved chemical properties of thorium, other than its oxidation state (IV) and tendency to strongly sorb to surfaces, i.e., its “particle- or surface-activity”. However, the use of any tracer is hindered by a lack of knowledge of its chemical properties. Recent observations in the variability of carbon to 234Th ratios in different particle types, as well as of associations of Th(IV) with various marine organic biomolecules has led to the need for a review of current knowledge and what future endeavors should be taken to understand the marine chemistry of thorium.
-
PreprintCobalt, manganese, and iron near the Hawaiian Islands : a potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals( 2007-09-26) Noble, Abigail E. ; Saito, Mak A. ; Maiti, Kanchan ; Benitez-Nelson, Claudia R.The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt (n =147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale coldcore eddy, Cyclone Opal, revealed small distinct maxima in cobalt at ~100m depth and a larger inventory of cobalt within the eddy. We hypothesize that this was due to a cobalt concentrating effect within the eddy, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization (Benitez-Nelson et al. 2007). There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt-phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (~0.5nM) in surface waters relative to the iron depleted waters of the surrounding Pacific (Fitzwater et al. 1996), possibly due to island effects associated with the iron-rich volcanic soil from the Hawaiian Islands and/or anthropogenic inputs. Distinct depth maxima in total dissolved cobalt were observed at 400 to 600m depth, suggestive of the release of metals from the shelf area of comparable depth that surrounds these islands.
-
DatasetRadiochemistry data for fluids sampled from the Lost City Hydrothermal Field at the Atlantis Massif in 2018(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-01-11) Moore, Willard S. ; Frankle, Jessica D. ; Benitez-Nelson, Claudia R. ; Fruh-Green, Gretchen ; Lang, Susan Q.This dataset includes radiochemistry data for fluids from 7 vent sites (Marker 2, Beehive, Marker 8, Marker 3, Calypso, Marker C. and Sombrero) at the Lost City Hydrothermal Field at the Atlantis Massif (30N, Mid-Atlantic Ridge). Fluid samples were collected in September 2018 during the AT42-01 expedition of the R/V Atlantis with the remotely operated vehicle (ROV) Jason II. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/864434
-
Dataset234Th flux in epipelagic waters at Station ALOHA and the Equatorial Pacific from R/V Kilo Moana cruises KM1407, KM1418, & KM1515 during 2014-2015(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-03-31) Benitez-Nelson, Claudia R. ; Drazen, Jeffrey C. ; Popp, Brian N.234Th flux in epipelagic waters at Station ALOHA and the Equatorial Pacific from R/V Kilo Moana cruises KM1407, KM1418, & KM1515 during 2014-2015. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/806471
-
DatasetRadiochemistry data for rocks and deposits from the Lost City Hydrothermal Field at the Atlantis Massif from 2018-2020(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-01-11) Moore, Willard S. ; Frankle, Jessica D. ; Benitez-Nelson, Claudia R. ; Fruh-Green, Gretchen ; Lang, Susan Q.Radiochemistry of serpentinite, carbonate-brucite chimney, and other solid samples from the Lost City Hydrothermal Field at the Atlantis Massif from 2018 and four previous expeditions in 2015, 2005, 2003, and 2000 (Kelley et al., 2001; Kelley et al., 2005; Früh-Green et al.,2018). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/864460
-
PreprintA review of present techniques and methodological advances in analyzing Th-234 in aquatic systems( 2005-10-10) Rutgers van der Loeff, Michiel M. ; Sarin, Manmohan M. ; Baskaran, Mark ; Benitez-Nelson, Claudia R. ; Buesseler, Ken O. ; Charette, Matthew A. ; Dai, Minhan ; Gustafsson, Orjan ; Masqué, Pere ; Morris, Paul J. ; Orlandini, Kent ; Rodriguez y Baena, Alessia ; Savoye, Nicolas ; Schmidt, Sabine ; Turnewitsch, Robert ; Voge, Ingrid ; Waples, James T.The short-lived thorium isotope 234Th (half-life 24.1 days) has been used as a tracer for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinking particles has stimulated a rapidly increasing number of studies that require analyses of 234Th in both marine and freshwater systems. The original 234Th method is labour intensive. Thus, there has been a quest for simpler techniques that require smaller sample volumes. Here, we review current methodologies in the collection and analysis of 234Th from the water column, discuss their individual strengths and weaknesses, and provide an outlook on possible further improvements and future challenges. Also included in this review are recommendations on calibration procedures and the production of standard reference materials as well as a flow chart designed to help researchers find the most appropriate 234Th analytical technique for a specific aquatic regime and known sampling constraints.
-
PreprintBiogeochemical responses to late-winter storms in the Sargasso Sea, III—Estimates of export production using 234Th:238U disequilibria and sediment traps( 2009-01) Maiti, Kanchan ; Benitez-Nelson, Claudia R. ; Lomas, Michael W. ; Krause, Jeffrey W.Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2-4 fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems was dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2 to 3.7 m d-1. Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, 1-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91 ± 0.20 to 4.92 ± 1.22 mmol C m-2 d-1, 0.25 ± 0.08 to 0.54 ± 0.09 mmol N m-2 d-1, and 0.22 ± 0.04 to 0.50 ± 0.06 mmol Si m-2 d-1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1-11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3 - uptake derived new production rates, suggested that only a fraction, < 35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p < 0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65 - 95% (average 86 ± 14%) of the total POC export measured in this study was due to diatoms. Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported given the large association of this material with diatoms during these periods.
-
ArticleSmall phytoplankton drive high summertime carbon and nutrient export in the Gulf of California and Eastern Tropical North Pacific(John Wiley & Sons, 2015-08-31) Puigcorbe, Viena ; Benitez-Nelson, Claudia R. ; Masqué, Pere ; Verdeny, Elisabet ; White, Angelicque E. ; Popp, Brian N. ; Prahl, Fredrick G. ; Lam, Phoebe J.Summertime carbon, nitrogen, and biogenic silica export was examined using 234Th:238U disequilibria combined with free floating sediment traps and fine scale water column sampling with in situ pumps (ISP) within the Eastern Tropical North Pacific and the Gulf of California. Fine scale ISP sampling provides evidence that in this system, particulate carbon (PC) and particulate nitrogen (PN) concentrations were more rapidly attenuated relative to 234Th activities in small particles compared to large particles, converging to 1–5 µmol dpm−1 by 100 m. Comparison of elemental particle composition, coupled with particle size distribution analysis, suggests that small particles are major contributors to particle flux. While absolute PC and PN export rates were dependent on the method used to obtain the element/234Th ratio, regional trends were consistent across measurement techniques. The highest C fixation rates were associated with diatom-dominated surface waters. Yet, the highest export efficiencies occurred in picoplankton-dominated surface waters, where relative concentrations of diazotrophs were also elevated. Our results add to the increasing body of literature that picoplankton- and diazotroph-dominated food webs in subtropical regions can be characterized by enhanced export efficiencies relative to food webs dominated by larger phytoplankton, e.g., diatoms, in low productivity pico/nanoplankton-dominated regions, where small particles are major contributors to particle export. Findings from this region are compared globally and provide insights into the efficiency of downward particle transport of carbon and associated nutrients in a warmer ocean where picoplankton and diazotrophs may dominate. Therefore, we argue the necessity of collecting multiple particle sizes used to convert 234Th fluxes into carbon or other elemental fluxes, including <50 µm, since they can play an important role in vertical fluxes, especially in oligotrophic environments. Our results further underscore the necessity of using multiple techniques to quantify particle flux given the uncertainties associated with each collection method.
-
PreprintMesoscale physical–biological–biogeochemical linkages in the open ocean : an introduction to the results of the E-Flux and EDDIES programs( 2008-01-24) Benitez-Nelson, Claudia R. ; McGillicuddy, Dennis J.Mesoscale currents, fronts, and eddies are ubiquitous and energetic features of ocean circulation. These phenomena, sometimes referred to as the “internal weather of the sea,” accommodate a diverse set of physical, chemical, and biological interactions that influence marine biogeochemistry on a wide range of timescales. These biogeochemical processes include the “biological pump”, i.e. the transfer or flux of biologically produced organic matter and associated elements from the surface ocean to depth (Ducklow et al., 2001; Volk and Hoffert, 1985). Within ~ 80% of the world’s oceans, the productivity and species composition of the autotrophic organisms that contribute to the biological pump are typically limited by major nutrients (e.g. nitrogen, phosphorus, and silica), or trace metals (e.g. iron). Primary production in such oligotrophic regions therefore depends mostly on intense recycling of nutrients within the surface sunlit waters, with only a small fraction supported by that entering from the atmosphere, or from the physical transport of nutrients from nutrient-rich deep waters below. Evidence that mesoscale and submesoscale phenomena play a role in the latter process dates back more than two decades (Angel and Fasham, 1983; Franks et al., 1986; Ring Group, 1981; Tranter et al., 1980; Venrick, 1990; Woods, 1988).
-
ArticleHigh-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport processes in the ocean from RemoTe sensing field campaign(University of California Press, 2020-12-10) Buesseler, Ken O. ; Benitez-Nelson, Claudia R. ; Roca-Martí, Montserrat ; Wyatt, Abigale M. ; Resplandy, Laure ; Clevenger, Samantha J. ; Drysdale, Jessica A. ; Estapa, Margaret L. ; Pike, Steven M. ; Umhau, Blaire P.The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program of National Aeronautics and Space Administration focuses on linking remotely sensed properties from satellites to the mechanisms that control the transfer of carbon from surface waters to depth. Here, the naturally occurring radionuclide thorium-234 was used as a tracer of sinking particle flux. More than 950 234Th measurements were made during August–September 2018 at Ocean Station Papa in the northeast Pacific Ocean. High-resolution vertical sampling enabled observations of the spatial and temporal evolution of particle flux in Lagrangian fashion. Thorium-234 profiles were remarkably consistent, with steady-state (SS) 234Th fluxes reaching 1,450 ± 300 dpm m−2 d−1 at 100 m. Nonetheless, 234Th increased by 6%–10% in the upper 60 m during the cruise, leading to consideration of a non-steady-state (NSS) model and/or horizontal transport, with NSS having the largest impact by decreasing SS 234Th fluxes by 30%. Below 100 m, NSS and SS models overlapped. Particulate organic carbon (POC)/234Th ratios decreased with depth in small (1–5 μm) and mid-sized (5–51 μm) particles, while large particle (>51 μm) ratios remained relatively constant, likely influenced by swimmer contamination. Using an average SS and NSS 234Th flux and the POC/234Th ratio of mid-sized particles, we determined a best estimate of POC flux. Maximum POC flux was 5.5 ± 1.7 mmol C m−2 d−1 at 50 m, decreasing by 70% at the base of the primary production zone (117 m). These results support earlier studies that this site is characterized by a modest biological carbon pump, with an export efficiency of 13% ± 5% (POC flux/net primary production at 120 m) and 39% flux attenuation in the subsequent 100 m (POC flux 220 m/POC flux 120m). This work sets the foundation for understanding controls on the biological carbon pump during this EXPORTS campaign.
-
ArticleBiogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa(University of California Press, 2021-06-17) Estapa, Margaret L. ; Buesseler, Ken O. ; Durkin, Colleen A. ; Omand, Melissa M. ; Benitez-Nelson, Claudia R. ; Roca-Martí, Montserrat ; Breves, Elly ; Kelly, Roger P. ; Pike, Steven M.Comprehensive field observations characterizing the biological carbon pump (BCP) provide the foundation needed to constrain mechanistic models of downward particulate organic carbon (POC) flux in the ocean. Sediment traps were deployed three times during the EXport Processes in the Ocean from RemoTe Sensing campaign at Ocean Station Papa in August–September 2018. We propose a new method to correct sediment trap sample contamination by zooplankton “swimmers.” We consider the advantages of polyacrylamide gel collectors to constrain swimmer influence and estimate the magnitude of possible trap biases. Measured sediment trap fluxes of thorium-234 are compared to water column measurements to assess trap performance and estimate the possible magnitude of fluxes by vertically migrating zooplankton that bypassed traps. We found generally low fluxes of sinking POC (1.38 ± 0.77 mmol C m–2 d–1 at 100 m, n = 9) that included high and variable contributions by rare, large particles. Sinking particle sizes generally decreased between 100 and 335 m. Measured 234Th fluxes were smaller than water column 234Th fluxes by a factor of approximately 3. Much of this difference was consistent with trap undersampling of both small (<32 μm) and rare, large particles (>1 mm) and with zooplankton active migrant fluxes. The fraction of net primary production exported below the euphotic zone (0.1% light level; Ez-ratio = 0.10 ± 0.06; ratio uncertainties are propagated from measurements with n = 7–9) was consistent with prior, late summer studies at Station P, as was the fraction of material exported to 100 m below the base of the euphotic zone (T100, 0.55 ± 0.35). While both the Ez-ratio and T100 parameters varied weekly, their product, which we interpret as overall BCP efficiency, was remarkably stable (0.055 ± 0.010), suggesting a tight coupling between production and recycling at Station P.
-
PreprintAn assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy( 2005-06-18) Buesseler, Ken O. ; Benitez-Nelson, Claudia R. ; Burd, Adrian B. ; Charette, Matthew A. ; Cochran, J. Kirk ; Coppola, L. ; Fisher, Nicholas S. ; Fowler, Scott W. ; Gardner, Wilford D. ; Guo, L. D. ; Gustafsson, Orjan ; Lamborg, Carl H. ; Masqué, Pere ; Miquel, Juan Carlos ; Passow, Uta ; Santschi, Peter H. ; Savoye, Nicolas ; Stewart, G. ; Trull, Thomas W.Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234Th activity distribution (in order to calculate 234Th fluxes) and an estimate of the C/234Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C/234Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C/234Th either increases or is relatively invariant with increasing particle size (size classes >1 to 100’s μm). Observations also suggest that C/234Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2-3). We recommend sampling for C/234Th from a standard depth of 100 m, or at least one depth below the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234Th profiles and C/234Th samples during the course of longer observation periods to better sample temporal variations in both 234Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column.
-
ArticleThe transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response(Public Library of Science, 2012-03-29) Dyhrman, Sonya T. ; Jenkins, Bethany D. ; Rynearson, Tatiana A. ; Saito, Mak A. ; Mercier, Melissa L. ; Alexander, Harriet ; Whitney, LeAnn P. ; Drzewianowski, Andrea ; Bulygin, Vladimir V. ; Bertrand, Erin M. ; Wu, Zhijin ; Benitez-Nelson, Claudia R. ; Heithoff, AbigailPhosphorus (P) is a critical driver of phytoplankton growth and ecosystem function in the ocean. Diatoms are an abundant class of marine phytoplankton that are responsible for significant amounts of primary production. With the control they exert on the oceanic carbon cycle, there have been a number of studies focused on how diatoms respond to limiting macro and micronutrients such as iron and nitrogen. However, diatom physiological responses to P deficiency are poorly understood. Here, we couple deep sequencing of transcript tags and quantitative proteomics to analyze the diatom Thalassiosira pseudonana grown under P-replete and P-deficient conditions. A total of 318 transcripts were differentially regulated with a false discovery rate of <0.05, and a total of 136 proteins were differentially abundant (p<0.05). Significant changes in the abundance of transcripts and proteins were observed and coordinated for multiple biochemical pathways, including glycolysis and translation. Patterns in transcript and protein abundance were also linked to physiological changes in cellular P distributions, and enzyme activities. These data demonstrate that diatom P deficiency results in changes in cellular P allocation through polyphosphate production, increased P transport, a switch to utilization of dissolved organic P through increased production of metalloenzymes, and a remodeling of the cell surface through production of sulfolipids. Together, these findings reveal that T. pseudonana has evolved a sophisticated response to P deficiency involving multiple biochemical strategies that are likely critical to its ability to respond to variations in environmental P availability.
-
PreprintTh-234 sorption and export models in the water column : a review( 2005-10-10) Savoye, Nicolas ; Benitez-Nelson, Claudia R. ; Burd, Adrian B. ; Cochran, J. Kirk ; Charette, Matthew A. ; Buesseler, Ken O. ; Jackson, George A. ; Roy-Barman, Matthieu ; Schmidt, Sabine ; Elskens, MarcOver the past few decades, the radioisotope pair of 238U/234Th has been widely and increasingly used to describe particle dynamics and particle export fluxes in a variety of aquatic systems. The present paper is one of five review articles dedicated to 234Th. It is focused on the models associated with 234Th whereas the companion papers (same issue) are focused on present and future methodologies and techniques (Rutgers van der Loeff et al.), C/234Th ratios (Buesseler et al.), 234Th speciation (Santschi et al.) and present and future applications of 234Th (Waples et al.). In this paper, we review current 234Th scavenging models and discuss the relative importance of the non steady state and physical terms associated with the most commonly used model to estimate 234Th flux. Based on this discussion we recommend that for future work the use of models should be accompanied by a discussion of the effect that model and data uncertainty have on the model results. We also suggest that future field work incorporate repeat occupations of sample sites on time scales of 1-4 weeks in order to evaluate steady state versus non steady state estimates of 234Th export, especially during high flux events (> ca. 800 dpm m-2 d-1). Finally, knowledge of the physical oceanography of the study area is essential, particularly in ocean margins and in areas of established upwelling (e.g. Equatorial Pacific). These suggestions will greatly enhance the application of 234Th as a tracer of particle dynamics and flux in more complicated regimes.
-
ArticleConcentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa(University of California Press, 2021-06-28) Roca-Martí, Montserrat ; Benitez-Nelson, Claudia R. ; Umhau, Blaire P. ; Wyatt, Abigale M. ; Clevenger, Samantha J. ; Pike, Steven M. ; Horner, Tristan J. ; Estapa, Margaret L. ; Resplandy, Laure ; Buesseler, Ken O.Fluxes of major bioelements associated with sinking particles were quantified in late summer 2018 as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign near Ocean Station Papa in the subarctic northeast Pacific. The thorium-234 method was used in conjunction with size-fractionated (1–5, 5–51, and >51 μm) concentrations of particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica (bSi), and particulate inorganic carbon (PIC) collected using large volume filtration via in situ pumps. We build upon recent work quantifying POC fluxes during EXPORTS. Similar remineralization length scales were observed for both POC and PN across all particle size classes from depths of 50–500 m. Unlike bSi and PIC, the soft tissue–associated POC, PN, and TPP fluxes strongly attenuated from 50 m to the base of the euphotic zone (approximately 120 m). Cruise-average thorium-234-derived fluxes (mmol m–2 d–1) at 120 m were 1.7 ± 0.6 for POC, 0.22 ± 0.07 for PN, 0.019 ± 0.007 for TPP, 0.69 ± 0.26 for bSi, and 0.055 ± 0.022 for PIC. These bioelement fluxes were similar to previous observations at this site, with the exception of PIC, which was 1 to 2 orders of magnitude lower. Transfer efficiencies within the upper twilight zone (flux 220 m/flux 120 m) were highest for PIC (84%) and bSi (79%), followed by POC (61%), PN (58%), and TPP (49%). These differences indicate preferential remineralization of TPP relative to POC or PN and larger losses of soft tissue relative to biominerals in sinking particles below the euphotic zone. Comprehensive characterization of the particulate bioelement fluxes obtained here will support future efforts linking phytoplankton community composition and food-web dynamics to the composition, magnitude, and attenuation of material that sinks to deeper waters.
-
ThesisPhosphorous cycling in the Gulf of Maine : a multi-tracer approach(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1998-09) Benitez-Nelson, Claudia R.Knowledge of temporal and spatial nutrient turnover and export rates is of great importance for a variety of investigations, ranging from nutrient limitation to contamination uptake and removal. However, there are few methods that allow for the in situ elucidation of these processes. In this thesis research, in situ phosphorus turnover rates and upper ocean export were determined within the southwestern Gulf of Maine using the naturally occurring radionuclides phosphorus-32 (t_= 14.3 d), phosphorus-33 (t_ = 25.3 d), thorium-234 (t_ = 24.1) and beryllium-7 (t_ = 53.3 d). New techniques were developed for the extraction, purification and measurement of 32p and 33p in rainwater and in inorganic, organic and particulate pools in seawater. In order to constrain the input ratio of 33p/32p, rain samples were collected and measured continuously for 32p and 33p, as well as 7Be and 21OPb, from March 1996 to March 1998 at Woods Hole, MA, and from March 1997 to October 1997 at Portsmouth, NH. The average 33p;32p ratio was 0.88 ± 0.14. 32p, 33p, 7Be and 210Pb were further used to determine aerosol residence times and as possible tracers of stratospheric/tropospheric exchange during severe storm events. F our cruises were conducted in Wilkinson Basin, in the Gulf of Maine, during the spring and summer of 1997. 234Th was used to estimate advection and diffusion using 1D steady state and multi-dimensional non-steady state models. Export ratios (export/primary production) were found to range between 0.11 and 0.37. Vertical eddy diffusivity found using 7Be varied from 0.5 to 1.5 cm2 sec-I. Significant changes in phosphorus turnover rates within the reservoirs which contained 32p and 33p activity were found between the spring and summer months. In late summer, bacterial activity was substantial, significantly affecting the residence times of dissolved inorganic and organic phosphorus pools. Our results clearly show that 32p and 33p can provide much needed information regarding the biogeochemical cycling of P in marine systems and can be of use in the development of ecosystem models which seek to address mechanisms which affect primary production in the ocean.
-
ArticlePrediction of the export and fate of global ocean net primary production : the EXPORTS Science Plan(Frontiers Media, 2016-03-08) Siegel, David A. ; Buesseler, Ken O. ; Behrenfeld, Michael J. ; Benitez-Nelson, Claudia R. ; Boss, Emmanuel S. ; Brzezinski, Mark A. ; Burd, Adrian B. ; Carlson, Craig A. ; D'Asaro, Eric A. ; Doney, Scott C. ; Perry, Mary J. ; Stanley, Rachel H. R. ; Steinberg, Deborah K.Ocean ecosystems play a critical role in the Earth's carbon cycle and the quantification of their impacts for both present conditions and for predictions into the future remains one of the greatest challenges in oceanography. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) Science Plan is to develop a predictive understanding of the export and fate of global ocean net primary production (NPP) and its implications for present and future climates. The achievement of this goal requires a quantification of the mechanisms that control the export of carbon from the euphotic zone as well as its fate in the underlying “twilight zone” where some fraction of exported carbon will be sequestered in the ocean's interior on time scales of months to millennia. Here we present a measurement/synthesis/modeling framework aimed at quantifying the fates of upper ocean NPP and its impacts on the global carbon cycle based upon the EXPORTS Science Plan. The proposed approach will diagnose relationships among the ecological, biogeochemical, and physical oceanographic processes that control carbon cycling across a range of ecosystem and carbon cycling states leading to advances in satellite diagnostic and numerical prognostic models. To collect these data, a combination of ship and robotic field sampling, satellite remote sensing, and numerical modeling is proposed which enables the sampling of the many pathways of NPP export and fates. This coordinated, process-oriented approach has the potential to foster new insights on ocean carbon cycling that maximizes its societal relevance through the achievement of research goals of many international research agencies and will be a key step toward our understanding of the Earth as an integrated system.
-
ArticleFukushima Daiichi–derived radionuclides in the ocean : transport, fate, and impacts(Annual Reviews, 2016-06-30) Buesseler, Ken O. ; Dai, Minhan ; Aoyama, Michio ; Benitez-Nelson, Claudia R. ; Charmasson, Sabine ; Higley, Kathryn ; Maderich, Vladimir ; Masqué, Pere ; Morris, Paul J. ; Oughton, Deborah ; Smith, John N.The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.