Clark Malcolm R.

No Thumbnail Available
Last Name
Clark
First Name
Malcolm R.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    A blueprint for an inclusive, global deep-sea ocean decade field program
    (Frontiers Media, 2020-11-25) Howell, Kerry L. ; Hilario, Ana ; Allcock, A. Louise ; Bailey, David ; Baker, Maria C. ; Clark, Malcolm R. ; Colaço, Ana ; Copley, Jonathan T. ; Cordes, Erik E. ; Danovaro, Roberto ; Dissanayake, Awantha ; Escobar Briones, Elva ; Esquete, Patricia ; Gallagher, Austin J. ; Gates, Andrew R. ; Gaudron, Sylvie M. ; German, Christopher R. ; Gjerde, Kristina M. ; Higgs, Nicholas D. ; Le Bris, Nadine ; Levin, Lisa A ; Manea, Elisabetta ; McClain, Craig ; Menot, Lenaick ; Mestre, Mireia ; Metaxas, Anna ; Milligan, Rosanna J. ; Muthumbi, Agnes W. N. ; Narayanaswamy, Bhavani E. ; Ramalho, Sofia P. ; Ramirez-Llodra, Eva ; Robson, Laura M. ; Rogers, Alex D. ; Sellanes, Javier ; Sigwart, Julia D. ; Sink, Kerry ; Snelgrove, Paul V. R. ; Stefanoudis, Paris V. ; Sumida, Paulo Y. ; Taylor, Michelle L. ; Thurber, Andrew R. ; Vieira, Rui P. ; Watanabe, Hiromi K. ; Woodall, Lucy C. ; Xavier, Joana R.
    The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
  • Article
    Patterns of deep-sea genetic connectivity in the New Zealand region : implications for management of benthic ecosystems
    (Public Library of Science, 2012-11-21) Bors, Eleanor K. ; Rowden, Ashley A. ; Maas, Elizabeth W. ; Clark, Malcolm R. ; Shank, Timothy M.
    Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.
  • Article
    The distribution of benthic biomass in hadal trenches : a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor
    (Elsevier, 2015-02-19) Ichino, Matteo C. ; Clark, Malcolm R. ; Drazen, Jeffrey C. ; Jamieson, Alan ; Jones, Daniel O. B. ; Martin, Adrian P. ; Rowden, Ashley A. ; Shank, Timothy M. ; Yancey, Paul H. ; Ruhl, Henry A.
    Most of our knowledge about deep-sea habitats is limited to bathyal (200–3000 m) and abyssal depths (3000–6000 m), while relatively little is known about the hadal zone (6000–11,000 m). The basic paradigm for the distribution of deep seafloor biomass suggests that the reduction in biomass and average body size of benthic animals along depth gradients is mainly related to surface productivity and remineralisation of sinking particulate organic carbon with depth. However, there is evidence that this pattern is somewhat reversed in hadal trenches by the funnelling of organic sediments, which would result in increased food availability along the axis of the trenches and towards their deeper regions. Therefore, despite the extreme hydrostatic pressure and remoteness from the pelagic food supply, it is hypothesized that biomass can increase with depth in hadal trenches. We developed a numerical model of gravitational lateral sediment transport along the seafloor as a function of slope, using the Kermadec Trench, near New Zealand, as a test environment. We propose that local topography (at a scale of tens of kilometres) and trench shape can be used to provide useful estimates of local accumulation of food and, therefore, patterns of benthic biomass. Orientation and steepness of local slopes are the drivers of organic sediment accumulation in the model, which result in higher biomass along the axis of the trench, especially in the deepest spots, and lower biomass on the slopes, from which most sediment is removed. The model outputs for the Kermadec Trench are in agreement with observations suggesting the occurrence of a funnelling effect and substantial spatial variability in biomass inside a trench. Further trench surveys will be needed to determine the degree to which seafloor currents are important compared with the gravity-driven transport modelled here. These outputs can also benefit future hadal investigations by highlighting areas of potential biological interest, on which to focus sampling effort. Comprehensive exploration of hadal trenches will, in turn, provide datasets for improving the model parameters and increasing predictive power.
  • Preprint
    A systematic approach towards the identification and protection of vulnerable marine ecosystems
    ( 2013-11-13) Ardron, Jeff A. ; Clark, Malcolm R. ; Penney, Andrew J. ; Hourigan, Thomas F. ; Rowden, Ashley A. ; Dunstan, Piers K. ; Watling, Les ; Shank, Timothy M. ; Tracey, Di M. ; Dunn, Mathew R. ; Parker, Steven J.
    The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: 1) Comparatively assess potential VME indicator taxa and habitats in a region; 2) determine VME thresholds; 3) consider areas already known for their ecological importance; 4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; 5) develop predictive distribution models for VME indicator taxa and habitats; 6) compile known or likely fishing impacts; 7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); 8) identify areas of higher value to user groups; 9) conduct management strategy evaluations to produce trade-off scenarios; 10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.