Howarth Robert W.

No Thumbnail Available
Last Name
First Name
Robert W.

Search Results

Now showing 1 - 11 of 11
  • Preprint
    Ocean urea fertilization for carbon credits poses high ecological risks
    ( 2008) Glibert, Patricia M. ; Azanza, Rhodora ; Burford, Michele ; Furuya, Ken ; Abal, Eva ; Al-Azri, Adnan ; Al-Yamani, Faiza ; Andersen, Per ; Anderson, Donald M. ; Beardall, John ; Berg, Gry M. ; Brand, Larry E. ; Bronk, Deborah ; Brookes, Justin ; Burkholder, JoAnn M. ; Cembella, Allan D. ; Cochlan, William P. ; Collier, Jackie L. ; Collos, Yves ; Diaz, Robert ; Doblin, Martina ; Drennen, Thomas ; Dyhrman, Sonya T. ; Fukuyo, Yasuwo ; Furnas, Miles ; Galloway, James ; Graneli, Edna ; Ha, Dao Viet ; Hallegraeff, Gustaaf M. ; Harrison, John A. ; Harrison, Paul J. ; Heil, Cynthia A. ; Heimann, Kirsten ; Howarth, Robert W. ; Jauzein, Cecile ; Kana, Austin A. ; Kana, Todd M. ; Kim, Hakgyoon ; Kudela, Raphael M. ; Legrand, Catherine ; Mallin, Michael ; Mulholland, Margaret R. ; Murray, Shauna A. ; O’Neil, Judith ; Pitcher, Grant C. ; Qi, Yuzao ; Rabalais, Nancy ; Raine, Robin ; Seitzinger, Sybil P. ; Salomon, Paulo S. ; Solomon, Caroline ; Stoecker, Diane K. ; Usup, Gires ; Wilson, Joanne ; Yin, Kedong ; Zhou, Mingjiang ; Zhu, Mingyuan
    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.
  • Article
    Variation in sediment and seagrass characteristics reflect multiple stressors along a nitrogen-enrichment gradient in a New England lagoon
    (Association for the Sciences of Limnology and Oceanography, 2022-01-28) Haviland, Katherine Ann ; Howarth, Robert W. ; Marino, Roxanne ; Hayn, Melanie
    We examined concentrations of organic carbon, dissolved sulfides, total sediment sulfur, and stable sulfur isotope ratios in seagrass leaf tissues across a nitrogen-enrichment gradient in a coastal marine ecosystem (Cape Cod, Massachusetts) in 2007–2010 and 2017–2019. We also measured seagrass aboveground and belowground biomass, epibiota biomass, and leaf chlorophyll content. Seagrasses were present at all sites in the former period but were lost at our most nitrogen-impacted site (Snug Harbor) by 2011. In 2007–2010, sediment organic carbon and dissolved sulfides were highest in Snug Harbor and decreased along the gradient; leaf tissues depleted in 34S also indicated higher sulfide intrusion into seagrass tissues in more eutrophic areas. By 2017–2019, sediment organic carbon and pore-water soluble sulfides had decreased in Snug Harbor, but had increased at the intermediate site, to levels found at the most impacted site prior to the seagrass die-off. Again, leaf tissue 34S depletion reflected this pattern, indicating seagrasses were exposed to the highest sulfides at the intermediate site. The decreases in sediment organic carbon and soluble sulfides in Snug Harbor years after the loss of the seagrasses illustrate a feedback between high organic matter in seagrass beds and increasing stressors like elevated soluble sulfides in nutrient-enriched systems. We found significant relationships between sediment conditions and seagrass responses, including greater aboveground to belowground biomass ratios, epibiota biomass, and 34S-depleted leaves at sites with high pore-water sulfide and highly organic sediments. Our research suggests that the reduction of anthropogenic nitrogen entering the harbor is necessary for improving sediment quality and preventing seagrass mortality.
  • Article
    Tidal and groundwater fluxes to a shallow, microtidal estuary : constraining inputs through field observations and hydrodynamic modeling
    (Springer, 2012-05-30) Ganju, Neil K. ; Hayn, Melanie ; Chen, Shih-Nan ; Howarth, Robert W. ; Dickhudt, Patrick J. ; Aretxabaleta, Alfredo L. ; Marino, Roxanne
    Increased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19 m3/s) for the 8-week period was mainly due to groundwater input (0.21 m3/s) with contributions from precipitation to the estuary surface (0.026 m3/s) and removal by evaporation (0.048 m3/s). Spring–neap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index– salinity relationships during spring tide conditions only was responsible for most of the spring–neap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index–salinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring– neap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.
  • Thesis
    The role of sulfur in salt marsh metabolism
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1979-02) Howarth, Robert W.
    The rate of sulfate reduction in stands of dwarf Spartina alterniflora in the Great Sippewissett Salt Marsh is approximately 75 moles S04 m2 year-1. This is the highest rate reported for any natural ecosystem. Sulfate reduction is the most important form of respiration in the marsh and results in the annual consumption of 1800 g C m-2, approximately equivalent to net primary production. Sulfate reduction rates in the peat are high for at least three reasons: 1) the below-ground production of Spartina alterniflora provides a large, annual input of organic substrates over a depth of some 20 cm, 2) sulfate is rapidly resupplied to the peat in infiltrating tidal waters, so low sulfate concentrations never limit the rate of sulfate reduction, and 3) sulfide concentrations remain below toxic levels. The stable mineral pyrite is a major end-product of sulfate reduction in salt marsh peat while iron mono-sulfides are not. This is unlike most anoxic marine sediments and apparently results because iron mono-sulfides are undersaturated. The iron mono-sulfides are undersaturated in part because of the relatively low concentration of total soluble sulfides and in part because of the fairly low pH of the peat. Both of these conditions probably result from the activity of the Spartina roots. If the incorporation of 35S into pyrite were not measured, the S3504 reduction measurements would greatly underestimate the true rate of sulfate reduction. Pyrite acts largely as a temporary store of reduced. sulfur. The pyrite concentration of the peat undergoes seasonal changes. On an annual basis, the reduced sulfur which results from sulfate reduction is either re-oxidized to sulfate within the peat or is exported, much of it as thiosulfate or a similar intermediately reduced compound. Most of the energy which is originally in organic matters is stored in reduced sulfur compounds when the organic matter is respired by sulfate reducing bacteria. Consequently, the export of reduced sulfur compounds from the peat represents an energy export. The export of energy as reduced inorganic sulfur compounds is probably larger than the net above-ground production by Spartina. This is an important vector for moving some of the energy trapped by the below-ground production of Spartina to zones where it is available for coastal food webs.
  • Article
    Ecological constraints on planktonic nitrogen fixation in saline estuaries. I. Nutrient and trophic controls
    (Inter-Research, 2006-03-15) Marino, Roxanne ; Chan, Francis ; Howarth, Robert W. ; Pace, Michael L. ; Likens, Gene E.
    Heterocystous, planktonic cyanobacteria capable of fixing atmospheric N2 into available nitrogen (N) are common and critically important to nutrient cycling in many lakes, yet they are rarely observed in estuaries at salinities >10 ppt, even when strongly N limited. In a series of mesocosm experiments using water from Narragansett Bay (Rhode Island), we manipulated top-down (grazing) and bottom-up (nutrient) factors hypothesized to exclude heterocystous cyanobacteria from estuaries. We previously reported that planktonic, heterocystous cyanobacteria grew and fixed N in the absence of grazers. Here, we focus on responses to phosphorus (P) additions and grazer manipulations. Zooplankton (Acartia sp.) populations typical of temperate zone estuaries suppressed cyanobacteria, and their influence was direct through grazing rather than indirect on nutrient stoichiometry. Cyanobacterial abundance and heterocysts were low in treatments with no external P inputs. Concentrations of dissolved inorganic P comparable to those in Narragansett Bay were obtained only in P-fertilized mesocosms. Unlike previous estuarine mesocosm experiments with P fertilization, planktonic cyanobacteria grew and fixed N in our experimental systems. However, mean cell and heterocyst abundances under the most favorable conditions (high P, low N:P, and low grazers) were much lower than in comparable freshwater experiments, with N limitation maintained. These results support the hypothesis that intrinsic growth of heterocystous cyanobacteria in saline estuaries is slower than in freshwater, and that slower growth is unlikely to be due to systematic differences in P availability. Slow growth, combined with grazing, can severely limit development of planktonic, N-fixing cyanobacterial blooms in estuaries.
  • Preprint
    Roads as nitrogen deposition hot spots
    ( 2013-01) Bettez, Neil D. ; Marino, Roxanne ; Howarth, Robert W. ; Davidson, Eric A.
    Mobile sources are the single largest source of nitrogen emissions to the atmosphere in the US. It is likely that a portion of mobile-source emissions are deposited adjacent to roads and thus not measured by traditional monitoring networks, which were designed to measure longterm and regional trends in deposition well away from emission sources. To estimate the magnitude of near-source nitrogen deposition, we measured concentrations of both dissolved inorganic nitrogen (DIN) and total (inorganic + organic) dissolved nitrogen (TDN) in throughfall (i.e., the nitrogen that comes through the forest canopy) along transects perpendicular to two moderately trafficked roads on Cape Cod in Falmouth MA, coupled with measurements of both DIN and TDN in bulk precipitation made in adjacent open fields at the same transect distances. We used the TDN throughfall data to estimate total nitrogen deposition, including dry gaseous nitrogen deposition in addition to wet deposition and dry particle deposition. There was no difference in TDN in the bulk collectors along the transects at either site; however TDN in the throughfall collectors was always higher closest to the road and decreased with distance. These patterns were driven primarily by differences in the inorganic N and not the organic N. Annual throughfall deposition was 8.7 (+0.4) and 6.8 (+0.5) TDN - kg N ha-1 yr-1 at sites 10 m and 150 m away from the road respectively. We also characterized throughfall away from a non-road edge (power line right-of-way) to test whether the increased deposition observed near road edges was due to deposition near emission sources or due to a physical, edge effect causing higher deposition. The increased deposition we observed near roads was due to increases in inorganic N especially NH4 +. This increased deposition was not the result of an edge effect; rather it is due to near source deposition of mobile source emissions. We scaled these results to the entire watershed and estimate that by not taking into account the effects of increased gaseous N deposition from mobile sources we are underestimating the amount of N deposition to the watershed by 13% - 25%.
  • Preprint
    Reconciling carbon-cycle concepts, terminology, and methods
    ( 2006-01-06) Chapin, F. Stuart ; Woodwell, G. M. ; Randerson, James T. ; Rastetter, Edward B. ; Lovett, G. M. ; Baldocchi, Dennis D. ; Clark, D. A. ; Harmon, Mark E. ; Schimel, David S. ; Valentini, R. ; Wirth, C. ; Aber, J. D. ; Cole, Jonathan J. ; Goulden, Michael L. ; Harden, J. W. ; Heimann, M. ; Howarth, Robert W. ; Matson, P. A. ; McGuire, A. David ; Melillo, Jerry M. ; Mooney, H. A. ; Neff, Jason C. ; Houghton, Richard A. ; Pace, Michael L. ; Ryan, M. G. ; Running, Steven W. ; Sala, Osvaldo E. ; Schlesinger, William H. ; Schulze, E.-D.
    Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production.
  • Article
    Coupled biogeochemical cycles : eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems
    (Ecological Society of America, 2011-02) Howarth, Robert W. ; Chan, Francis ; Conley, Daniel J. ; Garnier, Josette ; Doney, Scott C. ; Marino, Roxanne ; Billen, Gilles
    Nutrient fluxes to coastal areas have risen in recent decades, leading to widespread hypoxia and other ecological damage, particularly from nitrogen (N). Several factors make N more limiting in estuaries and coastal waters than in lakes: desorption (release) of phosphorus (P) bound to clay as salinity increases, lack of planktonic N fixation in most coastal ecosystems, and flux of relatively P-rich, N-poor waters from coastal oceans into estuaries. During eutrophication, biogeochemical feedbacks further increase the supply of N and P, but decrease availability of silica – conditions that can favor the formation and persistence of harmful algal blooms. Given sufficient N inputs, estuaries and coastal marine ecosystems can be driven to P limitation. This switch contributes to greater far-field N pollution; that is, the N moves further and contributes to eutrophication at greater distances. The physical oceanography (extent of stratification, residence time, and so forth) of coastal systems determines their sensitivity to hypoxia, and recent changes in physics have made some ecosystems more sensitive to hypoxia. Coastal hypoxia contributes to ocean acidification, which harms calcifying organisms such as mollusks and some crustaceans.
  • Article
    Controls of benthic nitrogen fixation and primary production from nutrient enrichment of oligotrophic, Arctic lakes
    (Springer, 2013-12-01) Gettel, Gretchen M. ; Giblin, Anne E. ; Howarth, Robert W.
    We examined controls of benthic dinitrogen (N2) fixation and primary production in oligotrophic lakes in Arctic Alaska, Toolik Field Station (Arctic Long-Term Ecological Research Site). Primary production in many oligotrophic lakes is limited by nitrogen (N), and benthic processes are important for whole-lake function. Oligotrophic lakes are increasingly susceptible to low-level, non-point source nutrient inputs, yet the effects on benthic processes are not well understood. This study examines the results from a whole-lake fertilization experiment in which N and P were added at a relatively low level (4 times natural loading) in Redfield ratio to a shallow (3 m) and a deep (20 m) oligotrophic lake. The two lakes showed similar responses to fertilization: benthic primary production and respiration (each 50–150 mg C m−2 day−1) remained the same, and benthic N2 fixation declined by a factor of three- to fourfold by the second year of treatment (from ~0.35 to 0.1 mg N m−2 day−1). This showed that the response of benthic N2 fixation was de-coupled from the nutrient limitation status of benthic primary producers and raised questions about the mechanisms, which were examined in separate laboratory experiments. Bioassay experiments in intact cores also showed no response of benthic primary production to added N and P, but contrasted with the whole-lake experiment in that N2 fixation did not respond to added N, either alone or in conjunction with P. This inconsistency was likely a result of nitrogenase activity of existing N2 fixers during the relative short duration (9 days) of the bioassay experiment. N2 fixation showed a positive saturating response when light was increased in the laboratory, but was not statistically related to ambient light level in the field, leading us to conclude that light limitation of the benthos from increasing water-column production was not important. Thus, increased N availability in the sediments through direct uptake likely caused a reduction in N2 fixation. These results show the capacity of the benthos in oligotrophic systems to buffer the whole-system response to nutrient addition by the apparent ability for significant nutrient uptake and the rapid decline in N2 fixation in response to added nutrients. Reduced benthic N2 fixation may be an early indicator of a eutrophication response of lakes which precedes the transition from benthic to water-column-dominated systems.
  • Article
    Role of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity
    (Springer, 2021-02-17) Howarth, Robert W. ; Chan, Francis ; Swaney, Dennis P. ; Marino, Roxanne ; Hayn, Melanie
    Whether net primary productivity in an aquatic ecosystem is limited by nitrogen (N), limited by phosphorus (P), or co-limited by N & P is determined by the relative supply of N and P to phytoplankton compared to their elemental requirements for primary production, often characterized by the “Redfield” ratio. The supply of these essential nutrients is affected by both external inputs and biogeochemical processes within the ecosystem. In this paper, we examine external sources of nutrients to aquatic systems and how the balance of N to P inputs influences nutrient limitation. For ocean subtropical gyres, a relatively balanced input of N and P relative to the Redfield ratio from deep ocean sources often leads to near co-limitation by N and P. For lakes, the external nutrient inputs come largely from watershed sources, and we demonstrate that on average the N:P ratio for these inputs across the United States is well above that needed by phytoplankton, which may contribute to P limitation in those lake that experience this average nutrient loading. Watershed inputs are also important for estuaries and coastal marine ecosystems, but ocean sources of nutrients are also significant contributors to overall nutrient loads. The ocean-nutrient sources of N and P are very often at or below the Redfield ratio of 16:1 molar, and can be substantially so, particularly in areas where the continental shelf is wide. This large input of coastal ocean nutrients with a low N:P ratio is one factor that may make N limitation more likely in many coastal marine ecosystems than in lakes.
  • Article
    Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light
    (Association for the Sciences of Limnology and Oceanography, 2013-07) Berg, Peter ; Long, Matthew H. ; Huettel, Markus ; Rheuban, Jennie E. ; McGlathery, Karen J. ; Howarth, Robert W. ; Foreman, Kenneth H. ; Giblin, Anne E. ; Marino, Roxanne
    Based on noninvasive eddy correlation measurements at a marine and a freshwater site, this study documents the control that current flow and light have on sediment–water oxygen fluxes in permeable sediments. The marine sediment was exposed to tidal-driven current and light, and the oxygen flux varied from night to day between −29 and 78 mmol m−2 d−1. A fitting model, assuming a linear increase in oxygen respiration with current flow, and a photosynthesis–irradiance curve for light-controlled production reproduced measured fluxes well (R2 = 0.992) and revealed a 4-fold increase in oxygen uptake when current velocity increased from ∼ 0 to 20 cm s−1. Application of the model to a week-long measured record of current velocity and light showed that net ecosystem metabolism varied substantially among days, between −27 and 31 mmol m−2 d−1, due to variations in light and current flow. This variation is likely typical of many shallow-water systems and highlights the need for long-term flux integrations to determine system metabolism accurately. At the freshwater river site, the sediment–water oxygen flux ranged from −360 to 137 mmol m−2 d−1. A direct comparison during nighttime with concurrent benthic chamber incubations revealed a 4.1 times larger eddy flux than that obtained with chambers. The current velocity during this comparison was 31 cm s−1, and the large discrepancy was likely caused by poor imitation by the chambers of the natural pore-water flushing at this high current velocity. These results emphasize the need for more noninvasive oxygen flux measurements in permeable sediments to accurately assess their role in local and global carbon budgets.