Sarin Manmohan M.

No Thumbnail Available
Last Name
Sarin
First Name
Manmohan M.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    A review of present techniques and methodological advances in analyzing Th-234 in aquatic systems
    ( 2005-10-10) Rutgers van der Loeff, Michiel M. ; Sarin, Manmohan M. ; Baskaran, Mark ; Benitez-Nelson, Claudia R. ; Buesseler, Ken O. ; Charette, Matthew A. ; Dai, Minhan ; Gustafsson, Orjan ; Masqué, Pere ; Morris, Paul J. ; Orlandini, Kent ; Rodriguez y Baena, Alessia ; Savoye, Nicolas ; Schmidt, Sabine ; Turnewitsch, Robert ; Voge, Ingrid ; Waples, James T.
    The short-lived thorium isotope 234Th (half-life 24.1 days) has been used as a tracer for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinking particles has stimulated a rapidly increasing number of studies that require analyses of 234Th in both marine and freshwater systems. The original 234Th method is labour intensive. Thus, there has been a quest for simpler techniques that require smaller sample volumes. Here, we review current methodologies in the collection and analysis of 234Th from the water column, discuss their individual strengths and weaknesses, and provide an outlook on possible further improvements and future challenges. Also included in this review are recommendations on calibration procedures and the production of standard reference materials as well as a flow chart designed to help researchers find the most appropriate 234Th analytical technique for a specific aquatic regime and known sampling constraints.
  • Article
    An assessment of the use of sediment traps for estimating upper ocean particle fluxes
    (Sears Foundation for Marine Research, 2007-05) Buesseler, Ken O. ; Antia, Avan N. ; Chen, Min ; Fowler, Scott W. ; Gardner, Wilford D. ; Gustafsson, Orjan ; Harada, Koh ; Michaels, Anthony F. ; Rutgers van der Loeff, Michiel M. ; Sarin, Manmohan M. ; Steinberg, Deborah K. ; Trull, Thomas W.
    This review provides an assessment of sediment trap accuracy issues by gathering data to address trap hydrodynamics, the problem of zooplankton "swimmers," and the solubilization of material after collection. For each topic, the problem is identified, its magnitude and causes reviewed using selected examples, and an update on methods to correct for the potential bias or minimize the problem using new technologies is presented. To minimize hydrodynamic biases due to flow over the trap mouth, the use of neutrally buoyant sediment traps is encouraged. The influence of swimmers is best minimized using traps that limit zooplankton access to the sample collection chamber. New data on the impact of different swimmer removal protocols at the US time-series sites HOT and BATS are compared and shown to be important. Recent data on solubilization are compiled and assessed suggesting selective losses from sinking particles to the trap supernatant after collection, which may alter both fluxes and ratios of elements in long term and typically deeper trap deployments. Different methods are needed to assess shallow and short- term trap solubilization effects, but thus far new incubation experiments suggest these impacts to be small for most elements. A discussion of trap calibration methods reviews independent assessments of flux, including elemental budgets, particle abundance and flux modeling, and emphasizes the utility of U-Th radionuclide calibration methods.