Slater Donald A.

No Thumbnail Available
Last Name
Slater
First Name
Donald A.
ORCID
0000-0001-8394-6149

Search Results

Now showing 1 - 7 of 7
  • Article
    Characteristic depths, fluxes and timescales for Greenland’s tidewater glacier fjords from subglacial discharge‐driven upwelling during summer
    (American Geophysical Union, 2022-03-02) Slater, Donald A. ; Carroll, Dustin ; Oliver, Hilde ; Hopwood, Mark J. ; Straneo, Fiamma ; Wood, Michael ; Willis, Joshua K. ; Morlighem, Mathieu
    Greenland's glacial fjords are a key bottleneck in the earth system, regulating exchange of heat, freshwater and nutrients between the ice sheet and ocean and hosting societally important fisheries. We combine recent bathymetric, atmospheric, and oceanographic data with a buoyant plume model to show that summer subglacial discharge from 136 tidewater glaciers, amounting to 0.02 Sv of freshwater, drives 0.6–1.6 Sv of upwelling. Bathymetric analysis suggests that this is sufficient to renew most major fjords within a single summer, and that these fjords provide a path to the continental shelf that is deeper than 200 m for two-thirds of the glaciers. Our study provides a first pan-Greenland inventory of tidewater glacier fjords and quantifies regional and ice sheet-wide upwelling fluxes. This analysis provides important context for site-specific studies and is a step toward implementing fjord-scale heat, freshwater and nutrient fluxes in large-scale ice sheet and climate models.
  • Article
    Large spatial variations in the flux balance along the front of a Greenland tidewater glacier
    (European Geosciences Union, 2019-03-15) Wagner, Till ; Straneo, Fiamma ; Richards, Clark G. ; Slater, Donald A. ; Stevens, Laura A. ; Das, Sarah B. ; Singh, Hanumant
    The frontal flux balance of a medium-sized tidewater glacier in western Greenland in the summer is assessed by quantifying the individual components (ice flux, retreat, calving, and submarine melting) through a combination of data and models. Ice flux and retreat are obtained from satellite data. Submarine melting is derived using a high-resolution ocean model informed by near-ice observations, and calving is estimated using a record of calving events along the ice front. All terms exhibit large spatial variability along the ∼5 km wide ice front. It is found that submarine melting accounts for much of the frontal ablation in small regions where two subglacial discharge plumes emerge at the ice front. Away from the subglacial plumes, the estimated melting accounts for a small fraction of frontal ablation. Glacier-wide, these estimates suggest that mass loss is largely controlled by calving. This result, however, is at odds with the limited presence of icebergs at this calving front – suggesting that melt rates in regions outside of the subglacial plumes may be underestimated. Finally, we argue that localized melt incisions into the glacier front can be significant drivers of calving. Our results suggest a complex interplay of melting and calving marked by high spatial variability along the glacier front.
  • Article
    Localized plumes drive front-wide ocean melting of a Greenlandic tidewater glacier
    (American Geophysical Union, 2018-11-15) Slater, Donald A. ; Straneo, Fiamma ; Das, Sarah B. ; Richards, Clark G. ; Wagner, Till
    Recent acceleration of Greenland's ocean‐terminating glaciers has substantially amplified the ice sheet's contribution to global sea level. Increased oceanic melting of these tidewater glaciers is widely cited as the likely trigger, and is thought to be highest within vigorous plumes driven by freshwater drainage from beneath glaciers. Yet melting of the larger part of calving fronts outside of plumes remains largely unstudied. Here we combine ocean observations collected within 100 m of a tidewater glacier with a numerical model to show that unlike previously assumed, plumes drive an energetic fjord‐wide circulation which enhances melting along the entire calving front. Compared to estimates of melting within plumes alone, this fjord‐wide circulation effectively doubles the glacier‐wide melt rate, and through shaping the calving front has a potential dynamic impact on calving. Our results suggest that melting driven by fjord‐scale circulation should be considered in process‐based projections of Greenland's sea level contribution.
  • Article
    Export of ice sheet meltwater from Upernavik Fjord, West Greenland
    (American Meteorological Society, 2022-03-01) Muilwijk, Morven ; Straneo, Fiamma ; Slater, Donald A. ; Smedsrud, Lars H. ; Holte, James W. ; Wood, Michael ; Andresen, Camilla S. ; Harden, Benjamin E.
    Meltwater from Greenland is an important freshwater source for the North Atlantic Ocean, released into the ocean at the head of fjords in the form of runoff, submarine melt, and icebergs. The meltwater release gives rise to complex in-fjord transformations that result in its dilution through mixing with other water masses. The transformed waters, which contain the meltwater, are exported from the fjords as a new water mass Glacially Modified Water (GMW). Here we use summer hydrographic data collected from 2013 to 2019 in Upernavik, a major glacial fjord in northwest Greenland, to describe the water masses that flow into the fjord from the shelf and the exported GMWs. Using an optimum multi-parameter technique across multiple years we then show that GMW is composed of 57.8% ± 8.1% Atlantic Water (AW), 41.0% ± 8.3% Polar Water (PW), 1.0% ± 0.1% subglacial discharge, and 0.2% ± 0.2% submarine meltwater. We show that the GMW fractional composition cannot be described by buoyant plume theory alone since it includes lateral mixing within the upper layers of the fjord not accounted for by buoyant plume dynamics. Consistent with its composition, we find that changes in GMW properties reflect changes in the AW and PW source waters. Using the obtained dilution ratios, this study suggests that the exchange across the fjord mouth during summer is on the order of 50 mSv (1 Sv ≡ 106 m3 s−1) (compared to a freshwater input of 0.5 mSv). This study provides a first-order parameterization for the exchange at the mouth of glacial fjords for large-scale ocean models.
  • Article
    Surface emergence of glacial plumes determined by fjord stratification
    (European Geosciences Union, 2020-06-18) De Andrés, Eva ; Slater, Donald A. ; Straneo, Fiamma ; Otero, Jaime ; Das, Sarah B. ; Navarro, Francisco
    Meltwater and sediment-laden plumes at tidewater glaciers, resulting from the localized subglacial discharge of surface melt, influence submarine melting of the glacier and the delivery of nutrients to the fjord's surface waters. It is usually assumed that increased subglacial discharge will promote the surfacing of these plumes. Here, at a western Greenland tidewater glacier, we investigate the counterintuitive observation of a non-surfacing plume in July 2012 (a year of record surface melting) compared to the surfacing of the plume in July 2013 (an average melt year). We combine oceanographic observations, subglacial discharge estimates and an idealized plume model to explain the observed plumes' behavior and evaluate the relative impact of fjord stratification and subglacial discharge on plume dynamics. We find that increased fjord stratification prevented the plume from surfacing in 2012, show that the fjord was more stratified in 2012 due to increased freshwater content and speculate that this arose from an accumulation of ice sheet surface meltwater in the fjord in this record melt year. By developing theoretical scalings, we show that fjord stratification in general exerts a dominant control on plume vertical extent (and thus surface expression), so that studies using plume surface expression as a means of diagnosing variability in glacial processes should account for possible changes in stratification. We introduce the idea that, despite projections of increased surface melting over Greenland, the appearance of plumes at the fjord surface could in the future become less common if the increased freshwater acts to stratify fjords around the Greenland ice sheet. We discuss the implications of our findings for nutrient fluxes, trapping of atmospheric CO2 and the properties of water exported from Greenland's fjords.
  • Article
    Heat stored in the Earth system: where does the energy go?
    (Copernicus Publications, 2020-09-07) von Schuckmann, Karina ; Cheng, Lijing ; Palmer, Matthew D. ; Hansen, James ; Tassone, Caterina ; Aicher, Valentin ; Adusumilli, Susheel ; Beltrami, Hugo ; Boyer, Tim ; Cuesta-Valero, Francisco José ; Desbruyeres, Damien ; Domingues, Catia M. ; García-García, Almudena ; Gentine, Pierre ; Gilson, John ; Gorfer, Maximilian ; Haimberger, Leopold ; Ishii, Masayoshi ; Johnson, Gregory C. ; Killick, Rachel E. ; King, Brian A. ; Kirchengast, Gottfried ; Kolodziejczyk, Nicolas ; Lyman, John ; Marzeion, Ben ; Mayer, Michael ; Monier, Maeva ; Monselesan, Didier Paolo ; Purkey, Sarah G. ; Roemmich, Dean ; Schweiger, Axel ; Seneviratne, Sonia I. ; Shepherd, Andrew ; Slater, Donald A. ; Steiner, Andrea K. ; Straneo, Fiammetta ; Timmermans, Mary-Louise ; Wijffels, Susan E.
    Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system – and particularly how much and where the heat is distributed – is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the period 1971–2018, with a total heat gain of 358±37 ZJ, which is equivalent to a global heating rate of 0.47±0.1 W m−2. Over the period 1971–2018 (2010–2018), the majority of heat gain is reported for the global ocean with 89 % (90 %), with 52 % for both periods in the upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 % (5 %) over these periods, 4 % (3 %) is available for the melting of grounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing: the EEI amounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87 W m−2, bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOI https://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).
  • Article
    Greenland Subglacial Discharge as a driver of hotspots of increasing coastal chlorophyll since the early 2000s
    (American Geophysical Union, 2023-05-18) Oliver, Hilde ; Slater, Donald ; Carroll, Dustin ; Wood, Michael ; Morlighem, Mathieu ; Hopwood, Mark J.
    Subglacial discharge emerging from the base of Greenland's marine‐terminating glaciers drives upwelling of nutrient‐rich bottom waters to the euphotic zone, which can fuel nitrate‐limited phytoplankton growth. Here, we use buoyant plume theory to quantify this subglacial discharge‐driven nutrient supply on a pan‐Greenland scale. The modeled nitrate fluxes were concentrated in a few critical systems, with half of the total modeled nitrate flux anomaly occurring at just 14% of marine‐terminating glaciers. Increasing subglacial discharge fluxes results in elevated nitrate fluxes, with the largest flux occurring at Jakobshavn Isbræ in Disko Bay, where subglacial discharge is largest. Subglacial discharge and nitrate flux anomaly also account for significant temporal variability in summer satellite chlorophyll a (Chl) within 50 km of Greenland's coast, particularly in some regions in central west and northwest Greenland.Runoff and modeled nitrate upwelling can explain temporal variability in surface cholorophyll in some coastal areas in west Greenland