Zhang
Chuang
Zhang
Chuang
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleNumerical-modeling-based investigation of sound transmission and reception in the short-finned pilot whale (Globicephala macrorhynchus)(Acoustical Society of America, 2021-07-12) Song, Zhongchang ; Zhang, Jinhu ; Ou, Wenzhan ; Zhang, Chuang ; Dong, Lijun ; Dong, Jianchen ; Li, Songhai ; Zhang, YuThe sound-transmission, beam-formation, and sound-reception processes of a short-finned pilot whale (Globicephala macrorhynchus) were investigated using computed tomography (CT) scanning and numerical simulation. The results showed that sound propagations in the forehead were modulated by the upper jaw, air components, and soft tissues, which attributed to the beam formation in the external acoustic field. These structures owned different acoustic impedance and formed a multiphasic sound transmission system that can modulate sounds into a beam. The reception pathways composed of the solid mandible and acoustic fats in the lower head conducted sounds into the tympano-periotic complex. In the simulations, sounds were emitted in the forehead transmission system and propagated into water to interrogate a steel cylinder. The resulting echoes can be interpreted from multiple perspectives, including amplitude, waveform, and spectrum, to obtain the acoustic cues of the steel cylinder. By taking the short-finned pilot whale as an example, this study provides meaningful information to further deepen our understanding of biosonar system operations, and may expand sound-reception theory in odontocetes.
-
ArticleDoes rotation during echolocation increase the acoustic field of view? Comparative numerical models based on CT data of a live versus deceased dolphin(IOP Publishing, 2023-04-04) Wei, Chong ; Houser, Dorian ; Erbe, Christine ; Zhang, Chuang ; Matrai, Eszter ; Finneran, James J. ; Au, Whitlow W.Spinning is a natural and common dolphin behavior; however, its role in echolocation is unknown. We used computed tomography (CT) data of a live and a recently deceased bottlenose dolphin together with measurements of the acoustic properties of head tissues to perform acoustic property reconstrcution. The anatomical configuration and acoustic properties of the main forehead structures between the live and deceased dolphins were compared. Finite element analysis (FEA) was applied to simulate the generation and propagation of echolocation clicks, to compute their waveforms and spectra in both near- and far-fields, and to derive echolocation beam patterns. Model results from both the live and deceased dolphins were in good agreement with click recordings from live, echolocating individuals. FEA was also used to estimate the acoustic scene experienced by a dolphin rotating 180ã about its longitudinal axis to detect fish in the far-field at elevation angles of 0ã –20ã . The results suggest that the spinning behavior provides a wider insonification area and compensates for the dolphin’s relatively narrow biosonar beam and constraints on the pointing direction that are limited by head movement. The results also have implications for examining the accuracy of FEA in acoustic simulations using freshly deceased specimens.