David Carmen L.

No Thumbnail Available
Last Name
David
First Name
Carmen L.
ORCID
0000-0002-4241-1284

Search Results

Now showing 1 - 3 of 3
  • Article
    The interactive effects of temperature and food consumption on growth of larval Arctic cod (Boreogadus saida): a bioenergetic model
    (University of California Press, 2022-02-10) David, Carmen L. ; Ji, Rubao ; Bouchard, Caroline ; Hop, Haakon ; Hutchings, Jeffrey A.
    Understanding larval growth, mediated by the interaction of early life traits and environmental conditions, is crucial to elucidate population dynamics. We used a bioenergetic model as an integrative tool to simulate the growth of Arctic cod (Boreogadus saida) larvae and to test the sensitivity of modeled growth to temperature and food quantity and quality. The growth was computed as the energy gained through food consumption minus the energy lost through respiration and other metabolic processes. We extended a previously published bioenergetic model to cover the full range of larval length and used a simplified feeding module. This simplification allowed us to build a predictive tool that can be applied to larval Arctic cod at a large spatial scale. Our model suggested that with subzero temperatures in the High Arctic, larvae need to increase food consumption in order to reach the observed length-at-age in late summer. The modeled growth agreed well with the field observations in the High Arctic but was 2–3 times higher than the laboratory-derived growth rate, probably due to differences in food type and selective mortality. Our study reveals important knowledge gaps in our understanding of larval cod growth in the High Arctic, including the lack of empirical estimations of daily ration and respiration for larvae under the natural habitat temperatures.
  • Article
    Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species
    (Springer, 2022-01-08) Schaafsma, Fokje L. ; David, Carmen L. ; Kohlbach, Doreen ; Ehrlich, Julia ; Castellani, Giulia ; Lange, Benjamin A. ; Vortkamp, Martina ; Meijboom, André ; Fortuna-Wünsch, Anna ; Immerz, Antonia ; Cantzler, Hannelore ; Klasmeier, Apasiri ; Zakharova, Nadezhda ; Schmidt, Katrin ; Van de Putte, Anton ; van Franeker, Jan A. ; Flores, Hauke
    Allometric relationships between body properties of animals are useful for a wide variety of purposes, such as estimation of biomass, growth, population structure, bioenergetic modelling and carbon flux studies. This study summarizes allometric relationships of zooplankton and nekton species that play major roles in polar marine food webs. Measurements were performed on 639 individuals of 15 species sampled during three expeditions in the Southern Ocean (winter and summer) and 2374 individuals of 14 species sampled during three expeditions in the Arctic Ocean (spring and summer). The information provided by this study fills current knowledge gaps on relationships between length and wet/dry mass of understudied animals, such as various gelatinous zooplankton, and of animals from understudied seasons and maturity stages, for example, for the krill Thysanoessa macrura and larval Euphausia superba caught in winter. Comparisons show that there is intra-specific variation in length–mass relationships of several species depending on season, e.g. for the amphipod Themisto libellula. To investigate the potential use of generalized regression models, comparisons between sexes, maturity stages or age classes were performed and are discussed, such as for the several krill species and T. libellula. Regression model comparisons on age classes of the fish E. antarctica were inconclusive about their general use. Other allometric measurements performed on carapaces, eyes, heads, telsons, tails and otoliths provided models that proved to be useful for estimating length or mass in, e.g. diet studies. In some cases, the suitability of these models may depend on species or developmental stages.
  • Article
    Insights into the diet and feeding behavior of immature polar cod (Boreogadus saida) from the under-ice habitat of the central Arctic Ocean
    (Wiley, 2024-06-24) Schaafsma, Fokje L. ; Flores, Hauke ; David, Carmen L. ; Castellani, Giulia ; Sakinan, Serdar ; Meijboom, Andre ; Niehoff, Barbara ; Cornils, Astrid ; Hildebrandt, Nicole ; Schmidt, Katrin ; Snoeijs-Leijonmalm, Pauline ; Ehrlich, Julia ; Ashjian, Carin J. ; The MOSAiC team ECO
    Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea-ice habitat, is hitherto very limited. To increase this knowledge, samples were collected at the under-ice surface during several expeditions to the CAO between 2012 and 2020, including the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The diet of immature B. saida and the taxonomic composition of their potential prey were analysed, showing that both sympagic and pelagic species were important prey items. Stomach contents included expected prey such as copepods and amphipods. Surprisingly, more rarely observed prey such as appendicularians, chaetognaths, and euphausiids were also found to be important. Comparisons of the fish stomach contents with prey distribution data suggests opportunistic feeding. However, relative prey density and catchability are important factors that determine which type of prey is ingested. Prey that ensures limited energy expenditure on hunting and feeding is often found in the stomach contents even though it is not the dominant species present in the environment. To investigate the importance of prey quality and quantity for the growth of B. saida in this area, we measured energy content of dominant prey species and used a bioenergetic model to quantify the effect of variations in diet on growth rate potential. The modeling results suggest that diet variability was largely explained by stomach fullness and, to a lesser degree, the energetic content of the prey. Our results suggest that under climate change, immature B. saida may be at least equally sensitive to a loss in the number of efficiently hunted prey than to a reduction in the prey's energy content. Consequences for the growth and survival of B. saida will not depend on prey presence alone, but also on prey catchability, digestibility, and energy content.