Hourdez Stephane

No Thumbnail Available
Last Name
Hourdez
First Name
Stephane
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Epifaunal community structure associated with Riftia pachyptila aggregations in chemically different hydrothermal vent habitats
    (Inter-Research, 2005-12-23) Govenar, Breea ; Le Bris, Nadine ; Gollner, Sabine ; Glanville, Joanne ; Aperghis, Adrienne B. ; Hourdez, Stephane ; Fisher, Charles R.
    The vestimentiferan tubeworm Riftia pachyptila (Polychaeta: Sibloglinidae) often dominates early succession stages and high productivity habitats at low-temperature hydrothermal vents on the East Pacific Rise. We collected 8 aggregations of R. pachyptila and the associated epifaunal community at 2 discrete sites of diffuse hydrothermal activity, in December 2001 and December 2002. Because of the high spatial and temporal variability of the biotic and abiotic factors related to hydrothermal vent activity, significant differences in the structure and the composition of the community were expected to occur at the scale of either 1 yr or 500 m distance between very different sites. There was no significant difference in the temperature ranges of the diffuse flow between sites or years, even though the environmental conditions were very different at the 2 sites. At 1 site (Riftia Field), the diffuse hydrothermal fluids had relatively low concentrations of sulfide, low pH, and high concentrations of iron. At the other site (Tica), the diffuse hydrothermal fluids had higher sulfide concentrations, the pH was closer to neutral, and iron was undetectable. The physiological condition of R. pachyptila appeared to reflect the availability of sulfide at each site. However, the structure and the composition of the epifaunal community were remarkably similar between sites and years, with the exception of a few species. Aggregations of R. pachyptila support high local species diversity relative to the surrounding seafloor and high community similarity in different hydrothermal vent habitats.
  • Article
    sFDvent: a global trait database for deep-sea hydrothermal-vent fauna
    (Wiley, 2019-07-30) Chapman, Abbie S. A. ; Beaulieu, Stace E. ; Colaço, Ana ; Gebruk, Andrey V. ; Hilario, Ana ; Kihara, Terue C. ; Ramirez-Llodra, Eva ; Sarrazin, Jozée ; Tunnicliffe, Verena ; Amon, Diva ; Baker, Maria C. ; Boschen‐Rose, Rachel E. ; Chen, Chong ; Cooper, Isabelle J. ; Copley, Jonathan T. ; Corbari, Laure ; Cordes, Erik E. ; Cuvelier, Daphne ; Duperron, Sébastien ; Du Preez, Cherisse ; Gollner, Sabine ; Horton, Tammy ; Hourdez, Stephane ; Krylova, Elena M. ; Linse, Katrin ; LokaBharathi, P. A. ; Marsh, Leigh ; Matabos, Marjolaine ; Mills, Susan W. ; Mullineaux, Lauren S. ; Rapp, Hans Tore ; Reid, William D. K. ; Rybakova, Elena Goroslavskaya ; Thomas, Tresa Remya A. ; Southgate, Samuel James ; Stöhr, Sabine ; Turner, Phillip J. ; Watanabe, Hiromi K. ; Yasuhara, Moriaki ; Bates, Amanda E.
    Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).