Dahl
Peter H.
Dahl
Peter H.
No Thumbnail Available
6 results
Search Results
Now showing
1 - 6 of 6
-
ArticleShelf-edge frontal structure in the central East China Sea and its impact on low-frequency acoustic propagation(IEEE, 2004-10) Ramp, Steven R. ; Chiu, Ching-Sang ; Bahr, Frederick L. ; Qi, Yiquan ; Dahl, Peter H. ; Miller, James H. ; Lynch, James F. ; Zhang, Renhe ; Zhou, Ji-XunTwo field programs, both parts of the Asian Seas International Acoustics Experiment (ASIAEX), were carried out in the central East China Sea (28 to 30 N, 126 30 to 128 E) during April 2000 and June 2001. The goal of these programs was to study the interactions between the shelf edge environment and acoustic propagation at a wide range of frequencies and spatial scales. The low-frequency across-slope propagation was studied using a synthesis of data collected during both years including conductivity- temperature-depth (CTD) and mooring data from 2000, and XBT, thermistor chain, and wide-band source data from 2001. The water column variability during both years was dominated by the Kuroshio Current flowing from southwest to northeast over the continental slope. The barotropic tide was a mixed diurnal/semidiurnal tide with moderate amplitude compared to other parts of the Yellow and East China Sea. A large amplitude semidiurnal internal tide was also a prominent feature of the data during both years. Bursts of high-frequency internal waves were often observed, but these took the form of internal solitons only once, when a rapid off-shelf excursion of the Kuroshio coincided with the ebbing tide. Two case studies in the acoustic transmission loss (TL) over the continental shelf and slope were performed. First, anchor station data obtained during 2000 were used to study how a Kuroshio warm filament on the shelf induced variance in the transmission loss (TL) along the seafloor in the NW quadrant of the study region. The corresponding modeled single-frequency TL structure explained the significant fine-scale variability in time primarily by the changes in the multipath/multimode interference pattern. The interference was quite sensitive to small changes in the phase differences between individual paths/modes induced by the evolution of the warm filament. Second, the across-slope sound speed sections from 2001 were used to explain the observed phenomenon of abrupt signal attenuation as the transmission range lengthened seaward across the continental shelf and slope. This abrupt signal degradation was caused by the Kuroshio frontal gradients that produced an increasingly downward-refracting sound-speed field seaward from the shelf break. This abrupt signal dropout was explained using normal mode theory and was predictable and source depth dependent. For a source located above the turning depth of the highest-order shelf-trapped mode, none of the propagating modes on the shelf were excited, causing total signal extinction on the shelf.
-
ArticleOverview of results from the Asian Seas International Acoustics Experiment in the East China Sea(IEEE, 2004-10) Dahl, Peter H. ; Zhang, Renhe ; Miller, James H. ; Bartek, Louis R. ; Peng, Zhauhui ; Ramp, Steven R. ; Zhou, Ji-Xun ; Chiu, Ching-Sang ; Lynch, James F. ; Simmen, Jeffrey A. ; Spindel, Robert C.The Asian Seas International Acoustics Experiment (ASIAEX) included two major field programs, one in the South China Sea and the other in the East China Sea (ECS). This paper presents an overview of research results from ASIAEX ECS conducted between May 28 and June 9, 2001. The primary emphasis of the field program was shallow-water acoustic propagation, focused on boundary interaction and geoacoustic inversion. The study area's central point was located at 29/spl deg/ 40.67'N, 126/spl deg/ 49.39'E, which is situated 500 km east of the Chinese coastline off Shanghai. The acoustic and supporting environmental measurements are summarized, along with research results to date, and references to papers addressing specific issues in more detail are given.
-
ThesisAcoustic diffraction from a semi-infinite elastic plate under arbitrary fluid loading with application to scattering from Arctic ice leads(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1989-05) Dahl, Peter H.The problem of a low-frequency acoustic plane wave incident upon a free surface coupled to a semi-infinite elastic plate surface, is solved using an analytic approach based on the Wiener-Hopf method. By low-frequency it is meant that the elastic properties of the plate are adequately described by the thin plate equation (kH ≲ 1). The diffraction problem relates to issues in long range sound propagation through partially ice-covered Arctic waters, where open leads or polynya on the surface represent features from which acoustic energy can be diffracted or scattered. This work focusses on ice as the material for the elastic plate surface, and, though the solution methods presented here have applicability to general edge diffraction problems, the results and conclusions are directed toward the ice lead diffraction process. The work begins with the derivation of an exact solution to a canonical problem: a plane wave incident upon a free surface (Dirichlet boundary condition) coupled to a perfectly rigid surface (Neumann boundary condition). Important features of the general edge diffraction problem are included here, with the solution serving as a guideline to the more complicated solutions presented later involving material properties of the boundary. The ice material properties are first addressed using the locally reacting approximation for the input impedance of an ice plate, wherein the effects of elasticity are ignored. This is followed by use of the thin plate equation to describe the input impedance, which incorporates elements of elastic wave propagation. An important issue in working with the thin plate equation is the fluid loading pertaining to sea ice and low-frequency acoustics, which cannot be characterized by simplifying heavy or light fluid loading limits. An approximation to the exact kernel of the Wiener-Hopf functional equation is used here, which is valid in this mid-range fluid loading regime. Use of this approximate kernel allows one to proceed to a complete and readily interpretable solution for the far field diffracted pressure, which includes a subsonic flexural wave in the ice plate. By using Green's theorem, in conjunction with the behavior of the diffracted field along the two-part planar boundary, the functional dependence of ∏D (total diffracted power) in terms of k (wavenumber), H (ice thickness), α (grazing angle) and the combined elastic properties of the ice sheet and ambient medium, is determined. A means to convert ∏D into an estimate of dB loss per bounce is developed using ray theoretical methods, in order to demonstrate a mechanism for acoustic propagation loss attributed directly to ice lead diffraction effects. Data from the 1984 MIZEX (Marginal Ice Zone Experiments) narrow-band acoustic transmission experiments are presented and discussed in this context.
-
ArticleShallow Water ’06 : a joint acoustic propagation/nonlinear internal wave physics experiment(Oceanography Society, 2007-12) Tang, Dajun ; Moum, James N. ; Lynch, James F. ; Abbot, Philip A. ; Chapman, Ross ; Dahl, Peter H. ; Duda, Timothy F. ; Gawarkiewicz, Glen G. ; Glenn, Scott M. ; Goff, John A. ; Graber, Hans C. ; Kemp, John N. ; Maffei, Andrew R. ; Nash, Jonathan D. ; Newhall, Arthur E.Since the end of the Cold War, the US Navy has had an increasing interest in continental shelves and slopes as operational areas. To work in such areas requires a good understanding of ocean acoustics, coastal physical oceanography, and, in the modern era, autonomous underwater vehicle (AUV) operations.
-
ArticlePolarization of ocean acoustic normal modes(Acoustical Society of America, 2021-09-15) Bonnel, Julien ; Flamant, Julien ; Dall'Osto, David R. ; Le Bihan, Nicolas ; Dahl, Peter H.In ocean acoustics, shallow water propagation is conveniently described using normal mode propagation. This article proposes a framework to describe the polarization of normal modes, as measured using a particle velocity sensor in the water column. To do so, the article introduces the Stokes parameters, a set of four real-valued quantities widely used to describe polarization properties in wave physics, notably for light. Stokes parameters of acoustic normal modes are theoretically derived, and a signal processing framework to estimate them is introduced. The concept of the polarization spectrogram, which enables the visualization of the Stokes parameters using data from a single vector sensor, is also introduced. The whole framework is illustrated on simulated data as well as on experimental data collected during the 2017 Seabed Characterization Experiment. By introducing the Stokes framework used in many other fields, the article opens the door to a large set of methods developed and used in other contexts but largely ignored in ocean acoustics.
-
ArticleOn the equivalence of scalar-pressure and vector-based acoustic dosage measures as derived from time-limited signal waveforms(Acoustical Society of America, 2024-05-15) Dahl, Peter H. ; Bonnel, Julien ; Dall'Osto, David R.The dynamic (acoustic pressure) and kinematic (acoustic acceleration and velocity) properties of time-limited signals are studied in terms of acoustic dose metrics as might be used to assess the impact of underwater noise on marine life. The work is relevant for the study of anthropogenic transient acoustic signals, such as airguns, pile driving, and underwater explosive sources, as well as more generic transient signals from sonar systems. Dose metrics are first derived from numerical simulations of sound propagation from a seismic airgun source as specified in a Joint Industry Programme benchmark problem. Similar analyses are carried out based on at-sea acoustic measurements on the continental shelf, made with a vector sensor positioned 1.45 m off the seabed. These measurements are on transient time-limited signals from multiple underwater explosive sources at differing ranges, and from a towed, sonar source. The study demonstrates, both numerically and experimentally, that under many realistic scenarios, kinematic based acoustic dosage metrics within the water column can be evaluated using acoustic pressure measurements.