Laufkötter Charlotte

No Thumbnail Available
Last Name
Laufkötter
First Name
Charlotte
ORCID
0000-0001-5738-1121

Search Results

Now showing 1 - 5 of 5
  • Article
    Light-dependent grazing can drive formation and deepening of deep chlorophyll maxima
    (Nature Research, 2019-04-24) Moeller, Holly V. ; Laufkötter, Charlotte ; Sweeney, Edward M. ; Johnson, Matthew D.
    Deep Chlorophyll Maxima (DCMs) are subsurface peaks in chlorophyll-a concentration that may coincide with peaks in phytoplankton abundance and primary productivity. Work on the mechanisms underlying DCM formation has historically focused on phytoplankton physiology (e.g., photoacclimation) and behavior (e.g., taxis). While these mechanisms can drive DCM formation, they do not account for top-down controls such as predation by grazers. Here, we propose a new mechanism for DCM formation: Light-dependent grazing by microzooplankton reduces phytoplankton biomass near the surface but allows accumulation at depth. Using mathematical models informed by grazing studies, we demonstrate that light-dependent grazing is sufficient to drive DCM formation. Further, when acting in concert with other mechanisms, light-dependent grazing deepens the DCM, improving the fit of a global model with observational data. Our findings thus reveal another mechanism by which microzooplankton may regulate primary production, and impact our understanding of biogeochemical cycling at and above the DCM.
  • Article
    Projected 21st-century changes in marine heterotrophic bacteria under climate change
    (Frontiers Media, 2023-02-16) Kim, Heather H. ; Laufkötter, Charlotte ; Lovato, Tomas ; Doney, Scott C. ; Ducklow, Hugh W.
    Marine heterotrophic(or referred to as bacteria) play an important role in the ocean carbon cycle by utilizing, respiring, and remineralizing organic matter exported from the surface to deep ocean. Here, we investigate the responses of bacteria to climate change using a three-dimensional coupled ocean biogeochemical model with explicit bacterial dynamics as part of the Coupled Model Intercomparison Project Phase 6. First, we assess the credibility of the century-scale projections (2015-2099) of bacterial carbon stock and rates in the upper 100 m layer using skill scores and compilations of the measurements for the contemporary period (1988-2011). Second, we demonstrate that across different climate scenarios, the simulated bacterial biomass trends (2076-2099) are sensitive to the regional trends in temperature and organic carbon stocks. Bacterial carbon biomass declines by 5-10% globally, while it increases by 3-5% in the Southern Ocean where semi-labile dissolved organic carbon (DOC) stocks are relatively low and particle-attached bacteria dominate. While a full analysis of drivers underpinning the simulated changes in all bacterial stock and rates is not possible due to data constraints, we investigate the mechanisms of the changes in DOC uptake rates of free-living bacteria using the first-order Taylor decomposition. The results demonstrate that the increase in semi-labile DOC stocks drives the increase in DOC uptake rates in the Southern Ocean, while the increase in temperature drives the increase in DOC uptake rates in the northern high and low latitudes. Our study provides a systematic analysis of bacteria at global scale and a critical step toward a better understanding of how bacteria affect the functioning of the biological carbon pump and partitioning of organic carbon pools between surface and deep layers.
  • Article
    Projected decreases in future marine export production : the role of the carbon flux through the upper ocean ecosystem
    (Copernicus Publications on behalf of the European Geosciences Union, 2016-07-14) Laufkötter, Charlotte ; Vogt, Meike ; Gruber, Nicolas ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Dunne, John P. ; Hauck, Judith ; John, Jasmin G. ; Lima, Ivan D. ; Seferian, Roland ; Völker, Christoph
    Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between −1 and −12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver for EP changes in some models but of low significance in others. Observational and experimental constraints on ecosystem structure and how the fixed carbon is routed through the ecosystem to produce export production are urgently needed in order to improve current generation ecosystem models and their ability to project future changes.
  • Article
    On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century
    (John Wiley & Sons, 2015-09-23) Hauck, Judith ; Volker, Chrisoph ; Wolf-Gladrow, Dieter A. ; Laufkötter, Charlotte ; Vogt, Meike ; Aumont, Olivier ; Bopp, Laurent ; Buitenhuis, Erik T. ; Doney, Scott C. ; Dunne, John P. ; Gruber, Nicolas ; Hashioka, Taketo ; John, Jasmin G. ; Le Quere, Corinne ; Lima, Ivan D. ; Nakano, Hideyuki ; Seferian, Roland ; Totterdell, Ian J.
    We use a suite of eight ocean biogeochemical/ecological general circulation models from the Marine Ecosystem Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement on a dominance of either the SAM or the warming signal south of 44°S. In the southernmost zone, i.e., south of 58°S, they concur on an increase of biological export production, while between 44 and 58°S the models lack consensus on the sign of change in export. Yet in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO2(aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44°S, all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44°S to the total uptake of the Southern Ocean south of 30°S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (∼10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30°S.
  • Article
    Drivers and uncertainties of future global marine primary production in marine ecosystem models
    (Copernicus Publications on behalf of the European Geosciences Union, 2015-12-07) Laufkötter, Charlotte ; Vogt, Meike ; Gruber, Nicolas ; Aita-Noguchi, M. ; Aumont, Olivier ; Bopp, Laurent ; Buitenhuis, Erik T. ; Doney, Scott C. ; Dunne, John P. ; Hashioka, Taketo ; Hauck, Judith ; Hirata, Takafumi ; John, Jasmin G. ; Le Quere, Corinne ; Lima, Ivan D. ; Nakano, Hideyuki ; Seferian, Roland ; Totterdell, Ian J. ; Vichi, Marcello ; Volker, Chrisoph
    Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.